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FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been forging
ahead in the path of progress and dynamism, offering a variety of courses and research
contributions. 1 am extremely happy that by gaining ‘A"’ grade from the NAAC in the
year 2024, Acharya Nagarjuna University is offering educational opportunities at the UG,
PG levels apart from research degrees to students from over 221 affiliated colleges spread
over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-04 with
the aim of taking higher education to the doorstep of all the sectors of the society. The
centre will be a great help to those who cannot join in colleges, those who cannot afford
the exorbitant fees as regular students, and even to housewives desirous of pursuing
higher studies. Acharya Nagarjuna University has started offering B.Sc., B.A., B.B.A.,
and B.Com courses at the Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M.,

courses at the PG level from the academic year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance mode,
these self-instruction materials have been prepared by eminent and experienced teachers.
The lessons have been drafted with great care and expertise in the stipulated time by these
teachers. Constructive ideas and scholarly suggestions are welcome from students and
teachers involved respectively. Such ideas will be incorporated for the greater efficacy of
this distance mode of education. For clarification of doubts and feedback, weekly classes
and contact classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country’s progress. It is my fond desire that in the
years to come, the Centre for Distance Education will go from strength to strength in the
form of new courses and by catering to larger number of people. My congratulations to
all the Directors, Academic Coordinators, Editors and Lesson-writers of the Centre who

have helped in these endeavors.

Prof. K.GangadharaRao

M.Tech.,Ph.D.,
Vice-Chancellor I/c

Acharya Nagarjuna University
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M.Sc DEGREE EXAMINATION

First Semester
Mathematics :: Paper IV-TOPOLOGY
MODEL QUESTION PAPER

Time: Three hours Maximum:70 Marks

Answer ONE question from each unit (5x14=70)

UNIT-I

1. (a) Prove that in any metric space &, each open sphere is an openset.

(b) State and prove Baire’s theorem.

(or)
2. (a) State and prove Cantor’s Intersection theorem.

(b) Let @ and @ be metric spaces and f is mapping of & into &. Then show that @ is
continuous at Blg iff @, - By = A(E,) — A(Eg).

UNIT-1I
3. (a) State and prove Lindelof’s theorem.
(b) Let x be topological spaces. Then show that any closed subset of X is the disjoint

union of its interior and its boundary. That it contains these sets, they are disjoint, and
it is their union.
(or)

4. (a) Let f:x y be a mapping of one topological space into another, and let there be given as
open set base in X and an open subbase with its generated open base in Y. Then show
that (i) f is continuous if the inverse image of each sub basic open set open and (ii) f is
open if the image of each basic openset is open.

(b) Let X be a second countable space, Then show that any open base for X has a
countable subclass which is also an openbase.

UNIT-111

5. State and prove Heine-Borel theorem.

(or)

6. State and prove Ascoli’s theorem.



UNIT-IV

7. State and prove Urysohn’s theorem.

(or)
8. (a) Prove that every compact subspace of Hausdorff space is closed.
(b) Show that the product of any non-empty class of Hausdroff space is a Hausdroff space.
UNIT-V

9. State and prove Urysohn’s imbedding theorem.

(or)
10. (a) Let @ be a topological space. If {@;} is non-empty class of connected subspace of
such that is N; @; non-empty, Then show that 1 =U; @; is also connected subspace of
a.

(b) Show that any continuous image of connected space is connected.
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LESSON-1

TOPOLOGY DEFINITION AND SOME
EXAMPLES IN METRIC SPACES

OBJECTIVES:

To introduce the notion of metric space.

To illustrate the concept of metric space by means of examples.

To obtain some related properties of metric spaces through examples.

To introduce the concept of metric space and illustrate it by means of examples. This
is the context of lesson 1.

(i) To introduce the concepts of open sphere, and open set in metric space.

(i) To obtain the properties of open spheres, open sets in metric spaces and using
these to characterize the open intervals in the space R of real numbers. These
concepts are dealt in Lesson 2

To introduce the concepts of closed sphere and closed sets in metric spaces and to
derive their basic properties is the content of Lesson 3.

To introduce the concept of convergence, completeness, Cauchy sequences in metric
spaces and prove Baire theorem regarding sequences of closed sets in metric spaces.
These are established in Lesson 4

To introduce the concept of continuity and uniform continuity in metric spaces and to
characterize continuity in terms of convergent sequences and open sets in metric
spaces, which is the content of Lesson 5.

STRUCTURE:

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Introduction

Definition and some examples

Fundamental Principles Relating to Metric Space
Model Examination Questions

Summary

Technical Terms

Self Assessment Questions

Suggested Readings

1.1 INTRODUCTION:

In this lesson the concept of a metric space, which is a generalization of the space R of a real
number, with the distance function defined by means a modulus of a real number, is
introduced and examples of metric spaces from various known spaces are given. Further
some interesting examples about metric spaces are given

The concept of distance is introduced into the set of real numbers through the notion of
modules|x| of a real of x, which is defined as |x| = 0 and |x|=0 if, and only if ,x = 0. This

modulus function on the set R of real numbers satisfies
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(iJlx—»l =0and [x—¥| —0 = x —y
(i)lx =¥l = |y —x|and
(ii)x—v| = |x—z|+|z—y|,forall x,v,z € R

The concept of the notions of limit, convergence, continuity, differentiation and integration
are introduced through this distance function.
The generation of modulus function and the distance function on the set of real numbers to

are arbitatry set leads to the study of metric spaces. A set X with a metric d satisfying the
properties akin to the distance function in the set of real numbers constitute metric spaces. In
these metric spaces the concepts of limit, convergence, continuity are studied.

1.2: Definition and some examples:
Definition 1.2.1:

Let X be a non-empty set. A metric on X is a real function d of ordered pairs of
elements of X which satisfies the following three conditions:

(i) dla, V)2 0andd(x.v)=0=x=1;
(ii) a(x, y¥) = d(v,x) (symmetry)
(iii) d(x,v) = d(x,z) + d(y,z) ( the triangle inequality).

The function d assigns to each pair (x,y) of elements of X a non- negative real number
d(x,y) which by symmetry does not depend on the order of elements; d(x,y) is called the
distance between x and y. A metric space consists of two objects: a non-empty set X and a
metric d on X. The elements of X are called the points of the metric space (X,d). Usually we
will be uniformal and denote the metric space (X,d) by X itself. However one should keep in
mind, that metric space means non-empty set together with a metric. One can different
metrics on the same set, which make it into distinct metric spaces. The following example is
rather trivial but shows that every non-empty set can be regarded and a metric space.

1.2.2: Examples:
Let X be an arbitrary non-empty set and defined by

o _[Oifx=y.
A ={1irx =y,

Then prove that d is metric on X.
Solution: Let X be an arbitrary non-empty set and d a function defined on X, such that d:

XX » X — R defined by

Oifx=vy.
1ifx =y

(i) We have d(x, v) = 0, for all x, v € X, Whether x = y,or, x = .

dix,v) = {

Alsod(x,v) =0 & x = y,sinced(x,y) =1, forx £y
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This proves the first metric property.

(ii) Again d(x,y) = d{y,x) =0whenx =y
and d{x, v) = d{v,x)=1, for x # v.
In either case d(x,y)=d(y,x), forall x, v € x

This proves the second metric property.
(iii) Further, if x=y, so that d(y,x) =0, we have

d(x,y) = d(x,z) +d(z,v).

Since d(x,z) = 0 if x=z
=1if x#z
Similarly d(z,y)=0ifz=y
=lifz#y
But in either case d(x,z)+d(z,y) is not less than zero.
Similarly when x #y,

dlx,v) = d(x,z) +diz, v).

This satisfies the fourth metric property.

Hence d defined on X is a metric.

1.2.3: Examples :

Consider the real line R and the real function |x| defined R by:

xif x>0
lx] =4—xifx<0
Oifx=0

Then show that a metric d defined on R as d(x,y) = |x —vl, for all

X, ¥ € R is actually metric.

Solution: Let R be the set of points on a real line and the real function |x| be defined on R by

xif x=0
x| =4+—xifx <0
Qifx=0

That is,|x| denotes the modulus of x, which is always positive. We know that the
modulus function satisfies :

(i) lx] =z0and |x|=0=x=10
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(i) 1—=x] = |x[;
(i) |x + vl = x|+ |vl

Consider the d-function on R defined by d(x, v) = |x — y|, for all x,y € R.
(a) Since |x —¥| = 0, it follows that
dix,y)=|x—vy| =0
That is, d{x, v = 0.
Also since |x| = 0 < x = 0,it follows that
dix,v)=|lx—vyv|=0=2x—y=0=2x=y
This proves the first metric property.

(b) Since |—x| = |x|it follows that d(x, v) = |[x —y| = |[—(x — y)|
=ly— x| =d(xy)
That is d(x,y) = d(y,x)
This proves the second metric property.
(c) Further, since |x + vl = |x| + |vl it follows that
dlx,y) = Ix —yl
=|lx-—z+z—y
=|lx—z] +|z—yl
=d(x,2) + d(zy)
That is dix, v) =d(x,z) + d(z,v)
This proves the third metric property.
Thus d is a metric on R. This is called the usual metric on R, or, the metric induced by
the modulus.

1.2.4: Examples :
Show that the set  of complex numbers with d-function defined by
d(z, — z,) = |z, — z5|,for all z,,2z, € Cis a metric space.
Solution : Let T be the set of complex numbers with d- function defined by
tllzy — 22) = |z — 22|, for wllzy,za ET
Where |z| denotes the modules of z, which is always positive and is given by
lz| = \.-m, where z = x+iy.

The given function d{z;, z;) = |z; — z; follows from the following properties of the modulus
function |z|.

)]zl z0and |z| =0 = z =0

(ii)|—z| = |z[;and

(iii) |21 + 23] = |z4| + |23

We now show that(c,d) is a metric space.
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(a) From (i) it follows that
d(zy,22) = |z — 2,| = 0
Andd(z; z)=0= |z, —z;| =0 =z =z,
This proves the first metric property
(b) From (ii) it follows that
d(zy, 2. )=z — z.| = |—(zy — z,)|
=|z;— z,| =d(z2,2,)
That is d(zy, 72) = d(zz, 7, )
This proves the second metric property.
(c) From (iii), we have
dlzy, z5) = |zy — 22| = |2y — 23 + 23 — 2,
= zy —zg| + |2z — zq]
—dlz, z5) + d{z5,25)
That is d(zy,z,) < d(z,,23) + d(z3,25)
This proves that third metric property.
Thus d is a metric on Z and hence (T,d) is a metric space.

1.2.5: Example:

Let f be a real function defined on the closed unit interval [0,1]. We say that f is
bounded function if there is a real number k such that.

|f(x)| = k, for every x €[0,1].

Let X denote the set of all bounded continuous function defined on the closed unit interval
[0,1] on X we define addition ‘+’ by
(f +9)(x) = flx) +g(x).
The zero function ‘0’ is defined by
0(x)=0, ¥ x € [0,1],
Is evidently bounded and continuous. So 0 € X.
The negative —f of f € X is defined by
(-H (%) = -f(x), x € [01]
One can easily see that —f € X.
Since each f € X, is bounded and continuous on [0,1], it is Riemann integrable over[0,1].

We define the norm || £l of a function f € X by

IFll = [y 1£C) dx

Evidently [If]l = 0,¥ f € X.

We define the d- function on X by :
dEg)=llf — gll = []1£(x) — g(x)| dx

we see that d is metric on X.

@d(tg)=If — gl = [J17(x) — g(x) | dx

= 0,since |f(x) —g(x)| = 0,¥ x € [0,1]

Also d(f,g) =0 = [[1f (x) - g(x)ldx = 0
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= |f(x)—glx)l=0
=|rf—gll=0
=f=g
®) dEg) = If — gll = [1If (x) — g(x) dx

= [1f(x) — g(x)ldx
=llg—fll
=d(g.f)
(c)For f,g,h € X.
d(f.g) =lIf — gll = [} 1f (x) - g(x)l dx
= Jo 1f () = h(x) + h(x) — g(x) dx
= [11f () — h(x) | dx + [ 1h(x) — g(x)ldx
=IIf —hll + Ilh - gll
= d(f;h)+d(h,g).

So ‘d’ is metric on X and hence (X,d) is a metric space.

1.2.6: Example:

Let d be metric on a non-empty set X. Show that the function d; defined by

dila.b)
di(ﬂ" .il}) = 14diab)

For a,b € X, is also a metric on X.

Solution : Let d be a metric on a non empty set X.
Let d, be a function defined by

dia.b)

d,(a,b) = 1+dlab) Jorabe X

We now prove that d; is also a metric on X

(a) Forab € X,

dy(a,b) = dlab)

1+d(ar)’ —

diab)

Also, di(a,b) =0 = 1+dlab)

=0,sinced(a,b) = 0.
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=dla,b) =0
=a=>h
This shows that d; satisfies the first axiom of metric

(b) Fora,b € X

) _ dlnk) _ dlha) . . .
dyla,b) = Ltdian) — Trd(pa) (since d is metric on X)
d, (b, a)

That is d;(a,b) = d;(b,a).

This shows that d, satisfies the second axiom of a metric space.
(c) Leta,b,c € X. Then

d(a, b) d(ab) :
1+ dab)+db.0 —1+dab) du(ab)===== '
And

d(b, c) < 909 e 2

1+ du, b) +d(b,¢) ~ 1+d(b,c)
Since d is metric on X , we have
dla,c) = d(a,b) +db,c)

Al = dlahl+dih.el
1+d(me) ~ 1+d(abl+d(b.ecl

Sodyla.c)=

(since d-value is positive).

diab) dib.cl
T 1+afap)tdne) | Lral@eied(ne)

= d,(a,c) +d,(b,c)
That is dyla,c) = dy{a,b) + dy(b,c)
This proves that d; satisfies the third axiom of metric.
Thus d; is also a metric on X.

1.2.7: Remark:

After defining a metric d; on X with respect to the metric d on X by

di(a,b) = edle, &)
e = a(a, by
One ear inductively define a metric d,, on X by
) d,_(ab
"-‘!:'z {_u, b} = L l{.ﬂ }

1+d,_,(ab)
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For every positive integer n. so, if X is a metric space, than it can be made into a metric
space in an infinitely many ways.

1.2.8: Remark :

dlia.b)
1+d{ab]l’

If d is a metric on X, Then the metric d; defined by d, (a, b) = is such that d,(a,b) <

d(a,b). So, the process of obtaining the metrics dy,
From d is a distance decreasing process.

1.3 : Fundamental Principles relating to metric spaces:
1.3.1: Definition :

Let (X,d) be a metric space and let Y be are arbitrary non-empty subset of X. If the function d
is considered to be defined only for the points of Y provided (Y,d) is evidently itself a metric
space.

Then, Y, with d restricted in this way, is called a subspace of (X,d).
1.3.2: Example:

() The closed unit interval [0,1] is a subspace of the real line, as is the set consisting of all the
rational points.

(i)The unit circle, the closed unit disc, and the open unit disc are subspace of the complex
plane.

(iii)The real line is itself is a subspace of the complex plane.

1.3.3: Definition:
An extended real number system is the real number system R together with the symbols -
o, wnied + oo such Lhal — o = +ow and for every real number X, —ow =2 x <= +au.

1.3.4 : Definition:

Let A be a non empty subset of R of real numbers. An element X in R is called a
lower bound of A, if x = a for each a € 4; and lower bound of A is called a greatest lower

bound, or, infimum of A if it is greater than or equal to every lower bound of A and simply it
is written as Inf A.

In other words, if A is non-empty and has a lower bound, then the greatest lower
bound or infimum is the largest real number x such that x = a for every a in A.

If A is non-empty and has no lower bound, we put inf A =—cc and if A is empty, we
put Inf A =+w

1.3.5 : Definition:

Let A be non-empty set of R of real numbers. The least upper bound, or, supremum of
the non-empty set A is smallest upper bound of A, simply it is written as Sup A.

If A is a non-empty set of real numbers which has no upper bound, and therefore no
least upper bound in R, we express this by writing.
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Sup A =+=
And if A is the empty subset of R, we put
Sup A= —wm

1.3.6 : Remark :

(i) The first advantage of the extended real number system is that it enables sup A and inf A
for subsets A of the real line with out any restrictions whatever on the nature of A.

(i) The second advantage is the availability of the symbols —« and +<c which lead to a
reasonable extension of the concept of an interval on the real line.

1.3.7 : Definition :

Let a and b be any two real numbers such that a=b. Then the closed interval from a to
b is the subset of the real line R defined by
[a,b]={x:a <x < b}
If b is real number and a is an extended real number such that a<b, then the open
closed interval from a to b is
(a,b]={x:a < x < b}
So(-az, b] is also an open closed interval.
If a is real number and b is an extended real number such that a<b, then the closed
open interval from a to b is
[a,b)={x:a <x < b}
So [a, |a)is also a closed open interval.
If a and b are extended real numbers such that a<b, Then the open interval from a to b
is
(a,b)={xu=<<x=b}
This adds to the previously defined open intervals those of the form(—=zz,b) where b is
real,(a, +o0) where a is real and (—ao, +o0) thought our study, the term interval will always
signify one of the four types (a, b),

1.3.8 :Definition :

Let X be a metric space with metric d, and let A be a subset of X. If x is a point of X, then the
distance from x to A is defined by ;

d(x,4) = inf{d(x,a):a € A}

that is, the distance from x to a is the greatest lower bound of the distances from x to points of
A.

1.3.9 :Definition :
Let X be a metric space with metric d, and let A be a subset of X. The diameter of the set A
is defined by

d(A4) = sup{d(a;,a,):a, and a, € A}

The diameter of A is thus the least upper bound of the distances between pair of its
points. A is said to have finite diameter or infinite diameter according as d(A) is a real
number, or ,+co,

The empty set has infinite diameter, since d(@) = —co
A bounded set is one whose diameter is finite.
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1.3.10 :Definition :

A mapping of a non empty set into a metric space is called a bounded mapping if its range is
bounded set.
Excercise :
(i)Let X be a non-empty set and let d be a real function of ordered pairs of elements of X,
which satisfies the conditions:

(Dd(x,y)=0= x=y

(1)d(x,y) < d(x, z)*+d(y, z).

show that d is a metric on X
(ii)Let X be the set of bounded continuous functions defined on [0,1]. Define another ||. [lon

X by :
£l = sup{|f(x)| /x € [D.1]}
Which we briefly write is

L1 = suplf(x)l.
Next define the d-function on X by

d(f.g) =If— gl

Show that d is a metric on X.
(ii1)Let X1 X2,X3,Xdyeevenvnnen Xy be a finite class of metric spaces with metric d;,d,,ds,...... d,
respectively and let
X=X, XX, XXX oo XX, ={(xp 25 cox ) /3, EX, 1<i<n}
Show that each of the following functions d and d are metrics on X :
DA(Xp X Xgs e e X ) (Y, Yo, Yoy e B)) = max{d,(x,,v,)/1< i =n};

() ((Xp Xy Xgy voe e o X ) (Y, Vo, ¥y e V) ) = 2 d (0, y:)
1.4 MODEL EXAMINATION QUESTIONS:

(1)Define a metric space and illustrate it by means of an example.

(i))Let X be an arbitrary non-empty set, show that the function d defined by

_ _(0ifx=y,
d(x,y) _{1 if x #y.

For all x, v € R, is a metric on X.

(ii1))Show that the set R of real numbers with d function defined by

dx,¥) = |x — ¥, for all x, ¥ € R is a metric space.
(iv)Show that the set of © complex numbers with d function defined by
d(z,,z,) = |z, — z,| forallz;,z, EC

(v)Let X be a metric space with metric d. show that d;, defined by
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_d (R3] . .
d,(x,v) = Traiey S also a metric on X.

1.5 SUMMARY:

A metric space is a set where a distance function is defined, allowing you to measure the
distance between any two elements within that set, with the key property that this distance
function must satisfy specific axioms like non-negativity, symmetry, and the triangle
inequality essentially. It formalizes the concept of distance in a general setting.

1.6 TECHNICAL TERMS:

e Metric Space: A set X together with a function d: X * X— R that satisfies the properties
of a metric.

e Discrete Metric Space: A metric space where the distance between any two distinct
points

e Compact Metric Space: A metric space that is compact, meaning that every sequence has
a convergent subsequence.

e Complete Metric Space: A metric space where every Cauchy Sequence Convergence.

1.7 SELF ASSESSMENT QUESTIONS:

1.What is meant by metric space?
Ans: A metric space is defined as a non-empty set with a distance function connecting two
metric points.

2.Given an example of metric space?
Ans: The well-known example of metric space is the set R of all real numbers with p(x, y) = |

X—y|

3.What is the triangle inequality property for the metric?
Ans: The triangle inequality property for the metric is given by: p(X, y) < p(X, z) + p(z, ).

4.Explain the difference between the metric and the norm.

Ans: A metric measures the distance between two places in space, whereas a norm measures
the length of a single vector. A metric can be defined on any set, while a norm can only be
specified on a vector space.

1.9 SUGGESTED READINGS:

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book
Company, New York International student edition.

Dr. M. Gnaneswara Reddy
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OPEN SETS AND CLOSED SETS IN METRIC

SPACES
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To introduce the concepts of open spheres, interior point of set and open sets in metric
spaces.

To illustrate the above concepts by means of suitable examples.

To show that every open sphere ia an open set in a metric space.

To obtain basic properties of open sets in metric space.

To establish that every open set in a metric space ia a union of open spheres.

To prove that every open set in the space R of real numbers is a countable union of
disjoint open spheres.

To introduce the notion of interior of a subset of a metric space and relate it to the
notion of open sets.

To introduce the concept of limit point of a set in a metric space.

The notions of limit point, closed sphere and closed sets are illustrated by means of
examples.

To prove that every closed sphere is a closed set in a metric space.

To obtain the basic properties of closed sets.

STRUCTURE:

2.1 Introduction

2.2 Open sets and Metric Spaces
2.3 Closed sets and Metric Spaces
2.4 Exercise

2.5 Model Examination Questions
2.6 Summary

2.7 Technical Terms

2.8 Self Assessment Questions

2.9 Suggested Readings

2.1 INTRODUCTION :

The notions of the open sphere, open set limit point of a set, closed sphere and closed set
are introduced in a metric space and its basic properties are obtained in this lesson. The open
sets in metric space are charecterised by means of open spheres. The complementary property
of open sets and closed sets is established. Further the open sets in the space R of real
numbers are also charecterised through open intervals.

2.2 OPEN SETS AND METRIC SPACES:
2.2.1 : Definition :

Let X be a metric space with metric d. Let x( be a point of X and let r be a positive

real number. Then open sphere S; (x¢ ) with center X, and radius r is the subset of X defined

by

5,0r) = x € X / d(x,%5) < 7}
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2.2.1 : Remark :

Since d(x,x9 ) = 0 <1,x9= S{(X¢) and thus an open sphere is always non-empty set, and it
contains its center X.

2.2.2 : Example :

In the metric space R of real numbers with respect to the usual metric, the open
sphere with center X radius r is given by

so(x) ={x ER/ d(x,x,) <r}
= {x ER/|x, xg| < 1}
={xeR/x,—r <x<x,+7}
which is the open interval (x¢-1,x¢+T).

2.2.3 Example :
For any x, in the metric space (x, d), where the metric d is defined by

Oifx=vw
Then S;(x¢)=1={x0} and S/(x¢)=X, for every r > 1.
Solution :

The open sphere 5,(x,) = {x €X / d(x,x;) = 1} = {x,} so the open sphere is
the singleton set {X(}and thus it contains only x

Suppose r >1. Consider sy(Xo) clearly sy (xg) EX — — — — — 1

Let anyx £ X if x = x¢ then d(x,x¢) = d(x¢,x) = 0= 1 =< r. If = x, , then d(x,x9) = 1= 1, so
that. That is x € s,.(x,). Thatis X € s,(x,) — — — —(2)

From (1) and(2) s,(x,) = X.

2.2.4 : Definition :

Let G be a subset of a metric space. A point x of G is called interior point of G if
there exist an open sphere s,.(x)such that s, (x) E G

The set of all interior points point of G is called the interior of G and it is denoted by Int(G).
2.2.5 : Definition :

A subset G of a metric space is said to be an open set if every point of G is an interior
point of G. That is, G is an open set , if for every x in G, there exist an open sphere s,(x) such
that 5,.(x) € G.

2.2.6 : Example :
The open interval (a ,b) of the real line R is an open set.
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Solution :

Let x £ (a, &) choose r such that 0<r< min{x-a, x-b}.

Then s,(x) = (x-1, x+1) < (a,b).

So every point of (a,b) is an interior point of (a,b) and thus open interval (a,b) is an open
set in R.

2.2.7 : Example : The subset [0,1) is not an open set in R.
Solution : For any real number r>0 (however small r may be ), the open sphere s,(0) = (-r, r)

contains infinitely many points of (-r, 0), which do not belong to [0, 1], so that s(0)% [0,1].
So 0€ [0,1) is not an interior point of [0, 1) and thus [0,1) is not an openset in R.

2.2.8 : Theorem :
In any metric space X, the empty set @ , and the full space X are open sets.

Proof : Since @ has no points, the fact that every point of @ is an interior point of @ is
trivially satisfied. Coming to the full space X, if x € X and s/(x) is are open sphere in X,
center x and radius r>0, then s/(x) is trivially a subset of full space X, so that s(x)E X. Thus x
is an interior point of X and X is open.

2.2.9 : Remark :

In Example 2.3.7, we have seen that [0, 1) is not open as a subset of the real line R. But if we
consider [0, 1) as a metric space X in its own right, [as a subspace of the real line ], then [0,
1) is open itself. Thus a set is open, or, not open only with respect to a specific metric space
containing it, never on its own.

2.2.10 : Theorem :
In any metric space X, each open sphere is an open set.

Proof : Let (x,d) be metric space and let x; € X, consider the open sphere s,(x¢). To show
that s(X¢) is open in (X,d), we have to show that every point of s,(x¢) is an interior point of
Sr(Xo).
To see this, let x € 5,.(x,).
Choose €= 0 such that e— r — d(x, x4). Then for every ¥ € s-(x),
We have d(x,y) < € and thus,
d(xo,y) = d(x0,x)*d(x,y)

< d(x¢,x)+E
= d(x0,x)+r-d(X,X0)

=T
That is d(x,y) <rand ¥ € s,(x,).
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That is, s.(x) € s,.(x,) and thus x is an interior point of s,.(x,] So s,.(x,) is an open set. The

following theorem characterizes open sets in terms of open spheres.

2.2.11 : Theorem :
Let (X, d) be a metric space. A subset G of x is open if, and only if, it is a union of open
spheres.

Proof : Suppose that G is open. then every point of G is an interior point of G. So, for every
x € G there exists an open sphere 5, (x) such that 5, (x) € G.

Let {5, (x)]xg be the collection of all such open sphere.
Then, U,e 5, (%) € 6.
Further x C s,. (x), s0 that G = U,eelx] S Uyee C s, (x). Thatis G = U,eg 5, ().

Conversely, assume that G is a union of a class S of open spheres. We show that G is open.
If S is empty. Then G is also empty and hence it is open.
Suppose S is non-empty. then G is also non-empty. Let x € G then G being a union of sets in

S,x € 5,.(x,), for some open sphere s.(x,) €S. Since every open sphere is an open set.
x € s,(x,) implies X is an interior point of s,.(xg). so, there exists an open sphere s,. (x) such
that s, (x) € 5, (x;). Then

5., (%) € 5,(xp) € Uls, /s, € S} =6G.

So, x is also an interior point of G and thus G is an open set.
The next theorem gives the fundamental properties of open sets in metric spaces.

2.2.12 : Theorem :

Let X be a metric space. Then
(1) any union of open sets in X is open ; and
(i)  any finite intersection of open sets in X is open.

Proof : Let X be metric space.

(i)Let {G,} be any class of open sets in Xand G=U,, G,.

We shall show that G is open in X.
To see this let x € G.

Then x € G, for some @ Since G, is open in X, there exists an open sphere Sy(x)
such that S((x)E G,. But 6, € U, G, = G.s0s(x) €G.

That is, x is an interior point of G and thus G is open.

(ii)Let {G, }'= ;be any finite class of open sets in X and let G = M-, G,.
To show that Gis openin X, Let x € &
Then x € G,, for every 1.
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Since for each i, 1< i =< n, G; is open, there exists open spheres Sp. x),1=i=n,
such that s, (x) € G,
Let r = min {r,r,........ ty}. Then s(X)E s, (x),for 1=i <n (since they have

common center and r < ).

Sos,(x)E G, forl<i<n,ors.(x) SN, G =0

Thus x is an interior point of G and hence G is open.
2.2.13 : Remark :

The condition of “finite ness” in the above theorem is essential. To see this,
consider the infinite class(—ﬁ,%) of open intervals on the real line.

Here each (—i,i) is open. But My=;(— %,%);{0} and {0} is not an open subset
in R, since every open sphere (-r,r), r>0 contains infinitely many points not in {0}.

The following theorem gives the charecterstic property of an open set in the set R of
real numbers.

2.2.14 : Theorem :
Every non-empty open set of the set R of real numbers is the union of a countable
disjoint class of open intervals.

Proof : step 1 :

Let G be an open set in R and Let x C G. Then there is a & > 0 such that
(x —8,x+ 8)  G. So, There is a y>x(that is ,any y such that x<y<x+& has this property)
such that (x,v) = G.Letb =sup{y/(x,v) € G}.

Similarly, there is a z<x such that (z , X) © G. (Any z, such that x —§ < z < x has
this property ).Let a = inf{z/(z , x) © G}. Then a<x<b

So Iy =(a, b), is an open interval containing x.
Step -2 :

We shall I,© G. To see this, Let € I, , such that x<w<b. Since b =sup {v/(x.¥) € G},
there is real number y such that w<y and (x,¥) € G.so w € G.

More over b € G.For if b € G, then G is open set implies there is an €= 0 such that
(b—e€,b+€) c G, when (x,b+€) © G, This contradicts the supremum property of b. so
beg.

Similarly if w is such that a<w<x, by using the fact that a = inf {z/(z, x) © G} one can
show that w € Gand a € G Thus I, C G.
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Step -3 :

Consider the collection of open intervals {I,./x € ¢}. For every x € G, Iy = (a, b) and
a<x<b, where a = inf {z/(z,x) « G}

b= sup {x/(x,y) G}
so,x €El,and G € U, . L.
Further, each I, © G, sothat U,.. I, € G.
Hence G = U, I,.

Step -4 : we now show that any two different intervals in {I,/x € G} are either disjoint, or,
identical.

Let (a, b) and (c, d) be any two different intervals in {I/x € G}.

If they are disjoint then there is nothing to prove.
otherwise these intervals have a common point, say, e.
Thatisa =e <bandc<e <d.

Then e =< b and ¢ = e imply that c<b.
Also a<d

In step 2, we have seen that ¢ does not belong to G. Since G = U_ .- L. and (a , b) =
{I./x € G}, it follows that ¢ € (a, b). so we must have ¢ < a.

Again a does not belong to G (by step 2), and (c , d) E G.so a does not belong to (¢, d), so
that u = c.

Hence a=c.
Similarly, we can show that b=d, and thus (a,b) = (c,d).
Thus two different intervals in the collection {I,./x € G} are either disjoint or identical.

Step -5 : We shall now show that the collection {I../x € G} is a countable collection.

Consider any 4. I, is an open interval. We know that any open interval contains a rational
number ry(by Archemedian property).

If r; and ry are rational numbers in the disjoint intervals I, and Iy, then r, # Ty consider

the set {r} is rational number in I, = {I./x € G}.Then {r(}is a subset of the set of rational
numbers. Since the set of rational numbers is countable and hence {I /x € G} is countable.

These show that G = U, I..which is union of collection {I../x € G} of disjoint open
interval I,.

2.2.15 : Definition : (Interior of a set)

Let X be a metric space. The set of all interior points of A is called the interior of A
and it is denoted by Int(A).

The basic properties of interiors are the following:
(1) Int (A) is an open set of A which contains every open subset of A.
(i1) A is open if, and only if, A=Int(A).
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(iii)  Int(A) equals the union of all open subsets of A.
In the following example we prove (ii).

2.2.16 : Example :
In a metric space X, a subset A of X is open if, and only if A=Int(A).

Solution : Let X be a metric space and let A be a subset of X.

First, Let us assume that A is an open set implies that A is a neighbourhood of each of its
points implies that every point of A is an interior point of A .Implies that
ASmtA————-1  Also each interior point of A belongs to A. Implies that
ntdcA————2.

From (1) and (2), we have A=Int(A).
Conversly, Let us assume that A=Int (A) implies that A is an open set, since Int (A)
is an open set.

Hence A is an open set if, and only if, A=Int(A).

2.2.17 : Example :

Let X be a metric space, and show that any two distinct point of X can be
saperated by open spheres.
Solution : Let X be metric space and let x, ¥ € X and x # y.

Put d(x, y)=d and choose a real number r such that 0 < r < ?
Consider the open sphere s,(x) and s,(y).

For any z € s,.(x), we have d(z,y) <r :::?

Suppose z £ s,.(x), then d(x,z) < ;

Sod(x,y) <d(x,z) +d(zy) <i+2=4d.

This is a contradiction to the fact that d(x, y)=d. so z & 5,.(x).
Similarly, one can show that for any 1 € 5,.(x) and u € s,.(x)

Hence, s,(x) N s,.(y)=0. That is, s(x) and s,(y) are open spheres centered at x and y such
that s,.(x) N s,(v)=0

2.3: CLOSED SETS AND METRIC SPACE:

2.3.1 : Definition :
Let X be a metric space with metric ‘d” and let AS X. A point x of X is called a

limit point of A if each open sphere centered on x contains at least one point of a different
from x.

2.3.2 : Example :

For the set A = {1,

1
-

.%, v e } in the real line R,0 is a limit point.

¥
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Solution :

To see this €= 0.Then s_(0) = (—€,€). If we choose a positive integer N such that
N ?Pé (or,% <€). then %E A and also %E s.(0) (since |l] _;,| = % <€).50 ‘0’ is a limit
point of A.

2.3.3 : Remark :

Observe that no other point of A is a limit point of A. That is, A has only one limit
point 0 and this does not belong to A. This example also shows that a limit point of a set
need not be in the set.

2.3.4 : Example :

The closed - open interval [0, 1) has 0 and 1 as limit points. Further every real number x such
that 0<x<1 is also a limit point of this set. Observe that the limit point 1 does not belong to
[0,1).

(proof is similar to that of example 2.3.2).

2.3.5 : Example :
The set of integers has no limit points.

Solution : Let n be any integers. For any real number 0<r<1,the open sphere (n-r, n+r) does
not contain any integer except n. So n is not a limit point of the set
{0,£1,%2, .......En,....]} of integers. This shows that the set of integers has no limit

points.

2.3.6 : Example :
For the set of rational numbers every real number is a limit point.

Solution :

Let Q and R respectively denote the set of rational numbers and the set of real
numbers.
Let r be any real number and €= 0 be any real number, however small. Then the open sphere

(r—&,r+€) contains infinitely many rational numbers since there are infinitely many

rational numbers between two distinct real numbers. so, r is a limit point of the set Q of
rational numbers.

2.3.7 : Definition :
A subset F of the metric space X is called a closed set, if it contains each of its limit
points.

2.3.8 : Example :

The closed-open interval [0,1) is not a closed set in the set of real numbers, since it
does not contain its limit pointl, even though it contains all other limit points. (see example
2.4.4)

2.3.9 : Example :
The closed interval [0,1] is a closed subset of the set of real numbers, since it
contains all its limit points including 0 and 1.
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2.3.10 : Theorem :
In any metric spaces X, the empty set ¢ and the full space X are closed sets.

Proof: The empty set ¢ has no points and hence it has no limit points, so that the set of the
limit points of the empty set ¢ is the empty set ¢. Since @ € @.trivially, ¢ is closed

The fully space X contains all the points of X. So it is automatically contains all its
limit points and thus X is closed.

2.3.11 : Theorem :
Let X be a metric space. A subset F of X is closed if, and only if, its compliment F1
in X is open.

Proof : : Let F be a closed subset of a metric space X, and let F1 be its compliment in X. If F'
is empty, then F' is trivially open.

So, let F' be non-empty and let x € F* We shall show that x is an interior point of F', So that
F! is open. Now xeF' implies that x¢ F. Since F is closed and x¢ F, it follows x is not a limit
point of F. So, there exists an open sphere, say, s(x) such that s(y) does not contain any point
of F, or, s{(x) m F=¢. This means that s,(x) € F!showing that x is an interior point of F'and
thus F' is open.

On the otherhand, let F' be an open set in X. To show that F is closed in X, it is enough
to show that F contains all its limit points. To see this ,let x be a limit point of F. If possible,
let x € F. Then x € F*. Since F' is open, x € F* implies that x is an interior point F'. So,

there exists an open sphere Si(x), such that S{(x)= F'. Then Sy(x)n F = @.

That is, there is an open sphere s«(x), centered x, which does not contain any
point of F. This shows that x is not a limit of F. This is contradiction to the .So, F is closed.
assumption that x is a limit point of F. So, our assumption that x does not belong to F is
wrong and thus x €F. So, F is closed.

Just as the notion of open sphere plays a key role in the charecterisation of open sets
in metric spaces, the notion of closed sphere plays a similar role in the study of closed sets in
metric spaces.

2.3.12 : Definition :
Let (X,d) be a metric space, >0 a real number and =x,;€ X.The set

s.[x,] = {x €X/d(x.x;) < r} is called the closed sphere center X, and radius r in X.

Analogous to the theorem 2.2.10 for open spheres, we have the following theorem for closed
spheres.

2.3.13 : Theorem :
In any metric space, each closed sphere is a closed set.

Proof :Let s[X¢] be a closed sphere in X. To show that s[xo] is closed. It suffices to prove
that its compliments sr[xo]1 is open.

If s,[xo]' is empty, then trivially it is open. So, let s xo]' be non-empty and let
x € 5, xy]% Then d(x,x0)>r. Let r; = d(x,X¢)-r. clearly r;>0.Consider the open sphere sy, ().
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We shall show that s, (x) € s, [x,]*, so that x is an interior point of s,[x]' and thus it is
open in X.

Lety €5, (x), so that d(x,y)<r.
Now d(x0,x) = d(x0,y)+d(x,y)
So, d(x¢,y) = d(x0,x)-d(x,y)

>d(x,x) — 11, (Since — d(x,y)-11)
= d(X¢,x)-[d(X,X¢)-T] =T

So v €s,.[x,],s0 that y C s, [x,]! That is s, (x) = s, [x,]* and x is an interior point
s, [xp]*. This shows that s, [x,]* open, so that s,[x,] is closed.

The following theorem gives the main properties of closed sets.

2.3.14 : Theorem :Let X be metric space. Then
(1)any intersection of closed sets in X is closed.
(i1)Union of finite number of closed sets in X is closed.

Proof : Let X be a metric space.

(i)Let {C,} be an arbitrary collection of closed subsets of X and let C =11, C,,.

To show that C is closed set in X, it is sufficient to prove that C' is open in X.
From the De Morgan Laws, (11, C,)* = U, C&.

Since each ( is closed in X, it follows that each(} is open in X. But arbitrary union of
open sets is open. So that U_ (X is open. That is, (M, C,)* is open and thus M C, is closed.
Thatis C =1, C_ is closed.

L

(i))Let {Ci/1,2,3,...... ,n} be a finite collection of closed sets in X and let C= Uj=, ;.

Again from the Demorgan laws, [UL, C,]* = ML, €. Since each C; is closed in X, it
follows that each ~lis open in X. But the intersection of finite number of open sets in X is
open X, so that M7=, Clis open in X. That is U™, €,]%s open in X, or, U%, C;is closed in X.
Thus C= U}, C;is closed in X.

2.3.15 : Definition :

Let X be a metric space and let A be a subset of X. The closures of A is the
union of A and the set of all its limit points and it is denoted by A4.The main facts about

closures are the following.

(i) A isaclosed super set of A, which is contained in every closed super set of A.
(ii) A is closed if, and only if, A=A4.

(iii) A equals the intersection of all closed supersets of A. In the following example
we

prove (ii).
2.3.16 : Example : Let X be a metric space. A subset A of X is closed if, and only if A=4.

Proof : Let X be a metric space.
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Let D(A) be the set of limit points of A. Then by the definition of closure of A,
A=4uD(4)

Suppose A is closed. Then A contains all its limit points, that is D(A)S A. So
A=AuD(4) = A.

On the other hand let 4 = 4. Then A= A UD(A), so that D(A)E A, or, A contains all
its limit points. So A is closed.
Hence A is subset A of X is closed if, and only if, A=4.

Another concept that is related to closed sets in a metric space is the boundary of a set
in a metric space.

2.3.17 : Definition :

Let X be a metric space and A a subset of X. A point in X is called a boundary
point of A if each open sphere centered on the point intersects both A and A' .

The boundary of A is the set of all its boundary points one can prove easily the
following properties of the boundary of a set A in a metric space X.

(1) The boundary of A equals to 4 n AT

(i)  The boundary of A is closed set.
(iii) A is closed if, and only if, it contains its boundary.

2.3.18 : Example :
Let X be a metric space and let A be a sunset of X. If x is a limit point of A, show
that each open sphere centered on x contains an infinite number of distinct points of A.

Solution : Let A be a subset of a metric space X and let x be a limit point of A. Suppose that
there is an open sphere S.(x) which contains only a finite number of points of A, say
X1,X2,X3,ee e X

For 1= 1 = n,let r=d(X,X;) and let ro be any real number such that 0 < ro < min {ry,r,rs....... o}

Clearly the open sphere or s, (x) does not contain any point of A other that x. This

contradicts the fact that x is a limit point of A. So, s{(x) must contain an infinite number of
distinct points of A.

2.3.19 :Example : Show that the finite subset of a metric space is closed.

Solution :Let A be a finite subset of a metric space X and let x € X.

If x is a limit point of A, then every neighborhood of x must contain an infinitely
many distinct points of A. This is not possible, since A is finite. So x is not a limit point of A.
This shows that the set of limit points of A. This shows that the set of limit points of A in X
is the empty set ¢.Since ¢ < A trivially, A is closed.

2.4 EXERCISES :

1. Let X be a metric space and A be a subset of X. Prove that the closure 4 of A is a closed
superset of A which is contained in every closed superset of A.

2. Let X be a metric space and A be a subset of X. Prove that the closure A4 equals the
intersection of all closed supersets of A.

3. Show that a subset of a metric space is bounded if and only if , it is nonempty and is
contained is some closed sphere.
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4. Prove the following properties on the boundary of a subset A of a metric space X:
(i) the boundary of A equals 4 n A

(i1) The boundary of A is a closed set.

(iii) A is closed if, and only if, it contains its boundary.
5. Let X be a metric space. If {x} is a subset of X consisting of a single point, show that its
compliment {x}' is open.
6. Let X be a metric space. If A is any finite subset of X, show that A" is open.
7. Let X be a metric space and S;{x}, the open sphere in X with centre x and radius r. Let A
be a subset of X with diameter less than r which intersects S;(x). Prove that A is contained
Sor(x).
8. Let X be a metric space. Show that every subset of X is open if, and only if, each subset of
X which consists of single point is open.
9. Let A and B be two subsets of a metric space X.
Prove the following:
(1) Int(A)v Int(B) = Int (AUB)
(i)  Int(A)n Int(B) = Int(ANB)

2.5 MODEL EXAMINATION QUESTIONS:

1. Define an open sphere. Show that the each open sphere is an open space in a metric
space X and thed
2. Define an open set is a metric space X. Show that the empty set full space X are open
sets in X.
3. Show that a subset G of a metric space X is open if, and only, if it is a union of open
spheres.
4. Let X be a metric space. Show that any two distinct points of X can be seperated by
open
spheres.
. Show that the subset [0,1) is not an open set in the set of real numbers R.
6. Let X be a metric space. Prove that
(1) Any union of open sets is X is open, and
(i1) Any finite intersection of open sets is X is open.
7. Prove that every non-empty open set on the real line is the union of countable disjoint
class
of open intervals.
8. Define(i) an interior point of a subset A of a metric space and (ii) the interior Int(A) of a
subset A of X. Prove that A is open if, and only if ,A = Int(A).

W

2.6 SUMMARY:

An open set is a set where every point within it has a small neighborhood entirely contained
within the set(meaning you can move a little bit around any point in the set and still stay
inside0,while a closed set includes all its boundary points, essentially meaning any point that
is close to the set must also be part of the set.

2.7 TECHNICAL TERMS:

e Boundary Points: The key difference lies in whether the set includes its boundary
points-open sets do not, while closed sets do
e Complement: A set is closed if and only if its complement is open.
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e Open set: The open interval(0,1) on the real number line, which includes all numbers
between 0 and 1but not 0 and 1 themselves.

e Closed set: The closed interval on the real number line, which includes all numbers
between 0 and 1, including 0 and 1.

2.8 SELF ASSESSMENT QUESTION:

1. In ametric space X, a subset A of X is open if, and only if A=Int(A).
Solution : Let X be a metric space and let A be a subset of X.

First, Let us assume that A is an open set implies that A is a neighbourhood of each of its
points implies that every point of A is an interior point of A .Implies that
ASIntA———-1 Also each interior point of A belongs to A. Implies that

IntAcd4d———-—-2.

From (1) and (2), we have A=Int(A).
Conversly, Let us assume that A=Int (A) implies that A is an open set, since Int (A)
is an open set.

Hence A is an open set if, and only if, A=Int(A).
2. The set of integers has no limit points.

Solution : Let n be any integers. For any real number 0<r<1,the open sphere (n-r, n+r) does
not contain any integer except n. So n is not a limit point of the set
{0,£1,%2, .......2En,....} of integers. This shows that the set of integers has no limit

points.

3. The subset [0,1) is not an open set in R.

Solution : For any real number r>0 (however small r may be ), the open sphere s,(0) = (-r, r)
contains infinitely many points of (-r, 0), which do not belong to [0, 1], so that s,(0)€ [0.1).

So 0€ [0,1) is not an interior point of [0, 1) and thus [0,1) is not an openset in R.

2.9 SUGGESTED READINGS:

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book
Company, New York International student edition.

Dr. M. Gnaneswara Reddy



LESSON-3

CONVERGENCE AND COMPLETENESS IN

METRIC SPACES - BAIRE’S THEOREM

OBJECTIVES :

®
L4

®
L4
®

L4

®
L4

®
L4

To introduce the concept of convergent sequence in metric spaces and to give its
equivalent forms through open spheres and limit of a sequence.

To introduce the concepts completeness and Cauchy sequences and illustrate them
with suitable examples.

To establish that every convergent sequence is Cauchy sequence but not vice-versa,
by means of an example.

To study the notions of limit and limit points of a sequence is a metric space and
obtain the condition under which they are the same.

To find a necessary and sufficient condition under which a subspace Y of a complete
metric space X is complete.

To prove Cantor’s Intersection theorem on a decreasing sequence of subsets of metric
spaces.

To prove the two versions of Baire’s Theorem.

STRUCTURE:

3.1 Introduction

3.2 Convergence in Metric Space
3.3 Completeness in Metric Space
3.4 Exercise

3.5 Model Examination Question
3.6 Summary

3.7 Technical Terms

3.8 Suggested Readings

3.1 INTRODUCTION:

This lesson deals with the notions of the convergence, completeness and baire’s
theorems. The concept of limit and convergent sequences in the real number system which
are studied in the real analysis can be successfully introduced in to metric spaces. The results
resulting to limit of a sequence and convergence throw a greater insight to the corresponding
notions on real number system and they complement each other. The Cantor’s intersection

Theorem and Baire’s theorems relating sequences of sets in a metric space are also
established in this lesson.
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3.2 CONVERGENCE IN METRIC SPACE :

3.2.1 Definition : Let X be a metric space and Let {X,}= {x1,X2,X3,...... b YR }be a
sequence in X. We say that {x,} is convergent in X, if there is a point x in X such that for
each €= 0, there exists a positive integer ny such that

d(xy,x) < €, for all n= ny,

The points x, which satisfy the condition d(x,,x) < € lie in the open sphere S_(x)
centre x and radius €, the above definition can equivalently be stated as: A sequence {X,} in
a metric space X is convergent if, for each open sphere S_(x) ,there exists a positive integer
ng such that x,, € 5.(x) for all n= ny,

Sincee >0 is arbitrary small, the statement that {x, } is convergent in X equally well
defined as follows: the {x, } is convergent in X if, there exists a point xeX such
that.d(x,,x)—0 as n—o0.Symbolically, we write this be x,—X as n—oo,and verbally express it
by saying that x, approaches x, or, x, converges to x as n—co .The point x is called the limit
of the sequence {x, } and we sometimes x,—X.

lim, ., x, = x, or simply lim x,=x
The statements x,—x and lim x,=x mean exactly the same, namely that {x,} is a
convergent sequence with limit x.

3.2.2 : Theorem :
The limit of a convergent sequence in a metric space is unique.

Proof : Suppose x and y be two limits of a convergent sequence {x, }.Then, given €>0 and

hence E =0 , there exists positive integers n; and n; such that and

d(xp,x) <Z, foralln = ny......... (1)

d(Xny) <=, foralln = m.......... )

Let np = max{n;,n,}. Then (1) and (2) hold for all n = ny.
Hence for all n = n,.

d(x,y) < d(Xp,x)*+d(Xn ,y)

<E4E

= €.

Since € is arbitrary small, this gives x =Y.
3.2.3. Theorem :
If the sequence {x,} is convergent, the given €= 0, there exists a positive integer ny

such that d(xm,xn) < €, for all m,n = n,.

Proof : Suppose that the sequence {x,} is convergent and convergence to x in X. Then given
£ 0 (and hence % > 0),there exists a positive integer no such that
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d(xn,x) < 5, foralln = ng........ (1)

So (1) holds for all m,n = ny. Hence
d(Xm,Xn) = d(Xm,X)+d(X,Xn)
<ELE
= & for all m,n= n,,

3.3 COMPLETENESS IN METRIC SPACES :

3.3.1 Definition :

A sequence {x, } in a metric space (X,d) is called a Cauchy sequence, if given €>0,
there exists a positive integer ng such that d(xm,x,) < &, for all m,n = ny.

This means that all the terms of the sequence except finite number of them ( possible
after x,, ) lie very close to each other.

3.3.2 Remark :

Theorem 3.3.3 shows that every convergent sequence in a metric space is a Cauchy
sequence. However the converse need not be true. There do exist Cauchy sequences in a
metric space (X, d), which are not convergent in X. The following example illustrates this.

3.3.3 Example :
An example of a Cauchy sequence which is not convergent.

Solution :
Consider the metric space
X =(0,1] = {x/x is a real number such that 0 <x = 1}

(X is a metric space with respect to the metric d defined by d(x, y)= |x — ¥[)

Consider the sequence { } in x.

n
Let €2 0. Choose a positive integer ny such that n, = E], where [x] denotes the

positive integer part of x, or, the largest integer = x. Then n, = [ so that =
¥

£ z,:, .

Then for all m,n fno,wehave— —{—:‘:—

m°n ny

Hence for all m,n = n,,

1 1
d[x:l?‘]’x:l'l] = | x | = ;_ ;|
< |24 |3 == + Z(sincem, n = 0)
m n m n
E+E
-4+ - —E
2 2

So { }15 a Cauchy sequence in x. But the limit of the sequence { }that is
lim, . ; =0,and 0 € [0,1] = x.

Hence the sequence is not convergent in X = [0,1].
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3.3.4 : Definition :
A metric space (X, d) is said to be a complete metric space, if every Cauchy
sequence in X converges in X.

3.3.5 : Example : From the example 3.4.3, if follows that the metric space (X,d) X, is not a
where X =[0,1] and d is given by d(x,y) = |[x—y|, for all x,y €X, is not a complete metric
space.

3.3.6 : Example :

Using the nested intervals theorem in the space R of real numbers, it is well
established that every Cauchy sequence in R is convergent in R. So R is a complete metric
space.

Using the fact that R is a complete metric space the metric space C of ,complex
numbers under the Metric d is defined by d(z;,z,)=|lz; —z,| for all z;,2,€C is also a

complete metric space.
Limits and Limit points of sequences in Metric spaces :

The terms Limit and Limit point are often a source of confusion. On the real line R,
consider the constant sequence {1, 1, ......... } is convergent with limit 1. But treating it as a
set, it is the singleton set {1} and hence it has no Limit points. This shows that a sequence
may have a limit point but cannot have a limit. The following theorem gives the conditions
under which a convergent a convergent sequence to have a limit point.

3.3.7 : Theorem :
If a convergent sequence in a metric space has infinitely many distinct points, then
the limit of the sequence is a limit point of the set of elements of the sequence.

Proof : Let (X, d) be a metric space and Let {x, } be a convergent sequence in X with limit
x. If possible, assume that x is not a limit point of the set {x, }. Then there exists an given
sphere S;(x) centred at x, which contains no point of the set {x, }.

But x being the limit of the sequence {x, } there exists a positive integer ny such that
d(x, xp)<r, for all n = n,

That is, the point x, , xp, 4y eeeenee all lie in the open sphere s.(x) since s,(x) does
not contain any point of {X, }, we must havex = x, =x, ., =-- .. Hence the sequence
{Xn } reduces to a finite sequence {X; , X2 , ........ Xno . This is a contradiction to the

hypothesis that the sequence {x, } contains infinitely many distinct points. So our
assumption that x is not a limit point of the set {x, }, is wrong. Hence x is also a limit point
of then set {x, }.

The next theorem says where a sub space of a complete metric space is complete.

3.3.8 : Theorem :
Let X be a complete metric space and let Y be a subspace of X. then Y is complete
if, and only if, it is closed.
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Proof :

Let (X, d) be a complete metric space and let Y be a subspace of X. Assume that

Y is complete as a subspace of X. We shall show that Y is a closed subspace of X. For this
one has to show that Y contains all its limit points.

Let y be a limit point of Y. then for every €= 0, the open sphere S.(¥) contains a

point, say, y' of Y. That is y* € §_(v).Taking €= %, n=1,2,3,...... , corresponding to each

7

i:r- O.there exists a point, say y, of Y such that y, € 5:(y) Then d(ym)y) = i, n=
mn

Consider the sequence {y,} in Y. Since a(y,.y)= i — 0 asn —+ o it follows that

Vn— Y as n—00, or, {y,} is a convergent sequence in Y. So {y,} is a Cauchy sequence Y.
(since every convergent sequence is a Cauchy sequence).
But Y is complete. So the Cauchy sequence {y,} converges in Y. Since
lim, . v, = v, this implies that ¥ € ¥. That is, Y contains all its limit points, so that Y is
closed.
conversly assume that Y is closed. We shall show that Y is complete. Consider a

Cauchy sequence {y,} in Y. Since {y, ¥ € X}, it follows that {y,} is also a Cauchy
sequence in X.

Since X is a complete metric space, and since {y, } is a Cauchy sequence in X, it
follows that {y, } converges in X. That is, x is a limit point of the set {y, } and {y, } € Y
.So x is also a limit point of Y. Since Y is closed xE€Y.

That is, the Cauchy sequence {y, } in Y converges in Y, so that Y is complete.
Cantor’s Intersection Theorem

3.3.9 : Definition :
Let (X, d) be a metric space and F, a subset of X. The diameter d(F) of the set F is
defined as :d(F) = sup{d(x,v)/x,v E F}

3.3.10 : Definition :
Let X be a metric space. A sequence {An } of subsets of X is called a decreasing
sequence. If 4, 2 4, 2 4; 2 ... 24, 2 ...

The following theorem called cantors Intersection Theorem gives conditions under
which the intersection of decreasing sequence of subsets of a metric space is non-empty.

3.3.11 : Cantor’s Intersection Theorem :
Let (X, d) be a complete metric space and let {E, } be a decreasing sequence of non-
empty closed subsets of X such that d(F,) = 0. Then F = [1¥_; F, contains exactly one

n=itn

point.

Proof : Let {F,} be a decreasing sequence of non-empty closed subsets of the complete
metric space (X, d) such that d(F,) — 0.
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Since each F, is non-empty, there exists a point. x,, € F,.

Consider the sequence {x, } in (X, d). Let m, n be any two distinct positive
integers. Then either m<n or n<m. For definiteness, let m<n. Then ¥, € F, and r,, € F,.

since {F, } is a decreasing sequence of subsets of (X, d) and since m<n, we have F,, © F,.

So x,, € F,, and thus both Xy, Xy € Fi,
By the definition d(F, ) = sup{d(x.v)/x,v €F,}

Xm, Xn € Fpn = d(x,,,,x,) € {d(x,¥)/x,yv €F,}

m*

= d(xp,x,) = sup{d(x,y)/x,y €F,}

m*

= At %,) = d(F,).

m*

Since, d(F,) — 0 as m—oo (and have n—o0), it follows d(x,,,x,) = 0 asm,n — 0

m'
This shows that {x, } is a Cauchy sequence in (X, d).

But (X, d) is a complete metric space, so that the Cauchy sequence {x, } converges
to a point in X. So there exists x € X such that lim x, = x.

We now show that x € (7=, F, so that 7=, F,, is a non-empty is required.

Let ny be a fixed but arbitrary positive integer. Here two cases will arise. Case (i) :
Let {x, } be a finite. Then for some fixed integer r.

X = X1 T Lrrz T

Since lim x, = x, it follows that
X=X, T Xy, T Xy T T T T T
If r <ng,then
X=X T Xpen =____=x:'zn =—-—- -
So that
x€F,

Ifr>ngthen F. € F, and x = x, EF, = x €F,

?!D

In either case x € F,, .

Case (ii): Let {x, } contain infinitely many distinct points. Then x, which is the limit of the
sequence {X, } is also a limit point of the set {x, }. Hence it is a limit point of the sequence

{x:zD’x:zD+ 1’xnn+ e }
which is a subset of F, (since F, 2 F, ;4 2 F, ., 2————) so x is also a limit
o ] o o=
point of F, . since F,, is a closed subset of X, the limit point x of F, is an F,, .

g

Hence x € F,_, for all positive integers, or, x € 1=, F, and thus -, F, = 0.

ng? n=1%n
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Uniqueness : suppose there are two points x,v € M=, F,, then d(x,v) < d(F,) = 0 as

Nn—00. SO X=Y.
Baire’s Theorem :

Any one of the following equivalent theorem’s is called the Baire’s category
theorem, or, simply the Baire theorem.
We need the following concepts in the proof of the theorem.

3.3.12 : Definition :

A subset A of a metric space (X, d) is said to be a nowhere dense if its closure has
empty-interior.

That is, A is said to be nowhere dense, if its closure 4 has no interior points, that is,
for every x €A there is a neighborhood G of x, which is not completely contained in A.

This can be put in the following equivalent forms.

A is nowhere dense < A does not contain any non-empty open set. (This follows
from the above discussion) <> each non-empty open set has non-empty open subset disjoint
from A <each non-empty open set has a non-empty open subset disjoint from A < each

non-empty open set contains are open sphere disjoint from A.
Using these ideas we prove the first form of Baire’s theorem.

3.3.13 : Theorem : (Baire’s Theorem First Version)
If {A, } is a sequence of nowhere dense sets in a complete metric space (X, d),
then there exists a point in X, which is not in any of the A, ’s.

Proof : The metric space(X, d) is open ( since X and ¢ are open sets in X )Since X is open
and A; is nowhere dense in X , There is an open sphere S; of radius less than 1, which is
disjoint from A, .

Let F1 be the concentric closed sphere (with S; ), whose radius is one half

that of S; (that is, = ) and consider its interior Int(F; )(which is an open set).Since A; is no

where dence. Int(F; ) (which is an open set). Contains an open sphere S, of radius less than é

,which is disjoint from A, .
Let F; be the concentric closed sphere whose radius is one half that of S, (that is, % ) and
consider its interior Int(F, )(which is an open set ).
Since Aj is nowhere dense, Int(F, )(being an open set) contains an open sphere S; of

radius less than iﬁ , which is disjoint from Aj .

Let F3 be the concentric closed sphere whose radius is one half that of S (that is, % )

and consider its interior Int(F3 )(which is an open set ).
Continuing this way, we get a decreasing sequence {F,} of non- empty closed subsets of

. 2 1 . . . 1
X, such that a(F,) < - = —— — 0 as n — 0, (since radius of F, is less than =
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Since the metric space (X,d) is complete, by Cantor’s Intersection Theorem (1=, F,
contains exactly one point, say, x of X. This point x is in all F,, ’s and hence in all S,, ’s. Since
each S, is disjoint from the corresponding A, , it follows that x is not in An ,for all n. Thus
there is a point x in X, which is not in any of A, ’s.

The following is an equivalent and most commonly used form of the above theorem.

3.3.14 : Theorem (Baire’s Theorem-second version)
If a complete metric space is a union of a sequence of its subsets, the closure of at
least one set of the sequence must have non empty interior.

Proof :

Let (X, d) be a complete space and Let {A, } be a sequence of subsets of X such
that ¥ = US_. 4.

If possible, assume that the closure of every A, has empty interior. Then each An
is a nowhere dense subset of X and thus {A, } is a sequence of nowhere dense subsets of the
complete metric space X. By the first version of Baire’s theorem, There is a point X in X,
which is not in any of the A, ’s.

That is,
x & A foralln

nt

So x & U=, A, = X. This is a contradiction to the fact that x € X. Hence our assumption

that every A, has empty interior is wrong and thus at least one A, has non-empty interior.

3.4 EXERCISE :

(1) Let X be a metric space. If {x, } and {y, } are sequences in X such that x,— x and
yn—Y, show that d(x_,¥,) = d(x, ¥)

(2) Show that a Cauchy sequence is convergent<> it has a convergent subsequence.

3.5 : MODEL EXAMINATION QUESTION:

(1) Define a convergent sequence is a metric space. Show that the limit of a convergent
sequence in a metric space is unique.

(2) Define a Cauchy sequence. Show that a convergent sequence in a metric space is a
Cauchy sequence. Give a example to show that a Cauchy sequence in a metric space need
not to be convergent.

(3) If a convergent sequence in a metric space has infinitely many district points, then show
that the limit point of the sequence is a limit point of the set of elements of the sequence.

(4) Let X be a complete metric space and let Y be a subspace of X. Prove that Y is complete
if, and only if, Y is closed.

(5) Let (X, d) be a complete metric space and let {F,, } be a decreasing sequence of non-
empty closed subsets of X such that d(F,) — 0. Prove that M}_, F,contains exactly one

point.
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(6) If {A, } is a sequence of nowhere dense sets in a complete metric space X, then prove
that there exists a point x in X which is not in any of the A, ’s.

(7) If a complete metric space is a union of a sequence of its subsets. Prove that the closure
of at least one set of the sequence must have non-empty interior.

3.6 SUMMARY :

Convergence refers to a sequence getting arbitrarily close to a specific point as the sequence
progresses, while completeness means that every Cauchy sequence within that space has a
limit that also lies within the space. Essentially ensuring that there are no holes where are
converging sequence might not have a point to converge to within the space itself, a complete
metric space is one where all Cauchy sequences converge to a point in the space.

3.7 TECHNICAL TERMS :

e Convergent Sequence: A sequence {x,n} in a metric space (x,d) converges to a point x
in X if for every €= 0, there exists N such that d(x_n,x)<€ for all n=N.

e Limit: The point x to which a sequence {x n} converges.

e Complete Metric Space: A metric space (x,d) is complete if every Cauchy Sequence in
X converges to a point in X.

e Compactness: A metric space (X,d) is compact if every sequence in X has a convergent
subsequence.

3.8 SUGGESTED READINGS:

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book
Company, New York International student edition.

Dr. M. Gnaneswara Reddy



LESSON - 4
CONTINUOUS MAPPINGS IN METRIC SPACES

OBJECTIVES :

J
0’0

To introduce the concept of continuity in a metric space(X,d) through the distance
function d and to give its equivalent representation through open spaces.

To establish a theorem expressing continuity through convergence of sequences in
metric spaces.

0’0

DS

» To Prove result that expresses continuity by means of open sets in metric spaces.

» To introduce the notion of uniform continuity in metric spaces and exhibit the
difference between the continuity and uniform continuity by means of examples.

%+ To prove a theorem on the extension of a uniformly continuous function f defined on

a dense subspace A of a metric space X in to a complete metric space Y to a

uniformly continuous function from X into Y.

DS

STRUCTURE :

4.1 Introduction

4.2 Continuous Function

4.3 Uniform Convergence

4.4 Isometry

4.5 Exercise

4.6 Model Examination Question
4.7 Summary

4.8 Technical Terms

4.9 Self Assessment

4.10 Suggested Readings

4.1 INTRODUCTION :

The motion of continuity can be successfully introduced into the metric spaces through
open spheres. In this lesson the continuity is charecterized by means of open sets in metric
spaces. The motion of uniform continuity is also discussed.

4.2 CONTINUOUS FUNCTION:

In the previous lesson we introduced the notion of convergence in metric spaces and
studied various aspects relating to it. In this lesson we do the same for continuity.

4.2.1 Definition :

Let X and Y be metric spaces with metrics d; and d, respectively and let f be a mapping
of X into Y, f'is said to be continuous at a point X, in X if, for every €= 0,there exists § = 0

such that d;(x,x)< &,implies that d,(f(x),f(x¢)) < &,

Since di(x,X0)< 6 & x € 55(x,)
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and dy(f(x),f(x0)) < € & f(x) € S<(f(x))
the definition of continuity can be stated in the following equivalent form: f is said to
be continuous at X, in X if, for every open sphere S.(f(x,))centered on f(xo), there exists an

open sphere 53z (Xo ) centered on X such that

F(S5(x0)) € S<(fxo))

The following theorem expresses continuity at a point in terms of sequences which
converge to that point.

4.2.2 Theorem :
Let X and Y be metric spaces and f:X — Y be a mapping. Then f is continuous at x
if, and only if, X, Xo = f(X,) =>1(X0).

Proof : Let (X,d; ) and (Y,d,) be metric be spaces be metric spaces and let f:X— Y be a
mapping. First let us assume that f is continuous at xpe X.

S ) (Xn}

\./"“‘.

Let {x,} be a sequence in X such that x,— x¢ as n—oo.we have to show f(x,)—f(x) as
n—o0.

Let S.(f(x,)) be an open sphere centered on f(xo) in Y. Since f is continuous at x , there

exists an open sphere 5(x,) in X such that

FlSs (VS S (flxp))eeennnnnn.t. (D

Since x,—> Xo as n—oo, corresponding to 6 >0, there exists a positive integer N such
that d;(xp,Xo) < for all n= N, or, x,€ 5;(x,), for all n= N.

So f(xn) € f(Ss(x,)), for all n= N,or f(xo)e S_(f(x,) ), forall n= N,
Since £(5;(xy)) S So(f(x0) )
This shows that d,(f(x,),f(x¢))< €. for all n= N. That is f(x,)— f(xo) as n—o.

Conversly, assume that x,— X, implies that f(x,)— f(x() as n—oo0.

If possible, assume that f is not continuous at xo .Then there exists an £>0 such

that SE[f [xc,]) does not contain that usage of any open sphere. Sz(x,) this is ,for every
& = Othis is an x € 55(x;) such that f(x) & 5_(f(x,)). Taking = Z =123, , there

n’

exists a sequence of points {X,} such that x,€ 5: (x,) and such that f(x,) & S_ [:f (:rc,)).
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1
Now X,€ 5= (%) =>di(Xn,X0) <; —(0 as n—oo.
n

That is x,—Xo as n —oo but f(x,) & 5.(f(x,)) for alln

= d,(f(x,),f(x,)) =€
= f(x,) does not converge to f(X).
This is a contradiction to the fact that x,— X as n —oo implies f(x,) as n—oo, f(x¢) as

n—o0 so our assumption that f is not continuous at x¢ is wrong and f must be continuous at x,
is wrong and f must be continuous at X,.

4.2.3 Definition :
Let X and Y be any two metric spaces A mapping f:x— Y is said to be continuous
on X if, it is continuous at every point x of X.

4.2.4 Remark :

Continuity at a point X of a metric space X is a local property, which is satisfied
at xo only, where as continuity on X is a global property, that is a property satisfied at all
points of X.

The following theorem is the consequence of the above theorem.

4.2.5 Theorem :

Let (X,d; ) and (Y,d2) be metric spaces, and f:X — Y be a mapping Then f is
continuous on X if, and only. X,— X. = f(x,) — f(x), for all xeX.

The next theorem charaecterized continuity in terms of open sets.

4.2.6 Theorem :
Let (X,d; ) and (Y,d,) be metric spaces, and let f be a mapping X into Y. Then f is
continuous if, and only, if f 1(G) is open in X whenever G is openin Y.

Proof : Let (X,d; ) and (Y,d;) be metric spaces, and let f:X— Y be a mapping.
Assume that f is continuous. Let G be a open subset of Y.
Now f'(G) = {xeX/f(x)e G}.
If £1(G) is empty, then trivially it is an open subset of X.
So let us assume that f'(G) is non-empty. We shall show that every point of £'(G)
is an interior point of f(G), so that it is open subset of X.
Let x€ f~*(G) Then f(x) € G. Since G is open in Y, f(x) is an interior point of G.
So there exists an open sphere 5 (f(x)) such that
S(fx)EG........... (1)

Since f: X —Y is a continuous mapping, corresponding to the open sphere S_(f(x))

in G there exists an open sphere 5;(x) in X centered on X, such that

f(S5(x)) €5 (f(x)) =G by.(1)
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So f(55(x)) €G,or, 55(x) € f~*(G) That is, there exists an open sphere Sjz(x)
centered on x such that 55(x) € f~1(G). Hence x is an interior point of £'(G), so that f'(G)

is open subset in X.

Conversely, assume that for every open subset G in Y, the set £'(G) open in X. We
shall show that f:X— Y is continuous.
Let xEX.Then f(x) €Y.Let be any open sphere centered on f(x) in Y. Then 55(x) is

an open set in Y(since an open sphere is an open set).
By hypothesis f'(5.(£(x))) is an open set in X. Since f(x)e S (f(x) )it follows that x £

fl(SE[f[xj)).

Since f'(5.(f(x))) is an open set in X. and since x € £'(5.(f(x))), x is an interior

point of (5 c [f (x) )j So there exists an open sphere 5;(x) centered on x such that
ss0) € F7(5.(F))
This gives f{S;(x)) € 5. (F(x)).
So f: X—Y is continuous at x, and hence an X.

4.3 UNIFORM CONVERGENCE:

Let (X,d;) and (Y,d,) be any two metric spaces. Suppose f: X— Y is continuous at
a point X€ X. Then corresponding to €= 0,there exists a § > 0, such that whenever yeX.

and d;(x , y) < d, we have dy(f(x),f(y))< €. Here & depends on both € and x. The following

example explain this fact.
4.3.1 Example :

Consider the function f from the R— R given by f(x) = 2x.
For any x CR and €= 0, consider, § = § then fory € X, |[x | < Swe have
|f(x) = F(») = [2x — 2y| = 2]x — vl
=24
< 2Z=€So,

the same 5§ (= E], serves for all xeX and hence & depends only on .

4.3.2 Example :

Consider the function f:R— R given by f(x)=x.
Since lim,_,, f(x) = lim, _, f(a + h) = lim, _,(a + h)*
=lim, _y(a* + 2ah + h*) = a* + 2a.0 + 0*

= o = £(a).
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So, f is continuous at every point x € R.

However, we shall show that & depends upon the point a also.

Leta ER and €=2. Choose & = L

-

1
For a=1 and x €R, such that |x —y| < -,

We have
=lflx) - fF(D)I=Ix*-1l=|x* -1

Now lx —1ll< = <x <2

. 5 3 1
Since x~ — 1=—;whenx=;and
~ 3
x*—1=2whenx=-.So
2 4
1 3 . 5
g —1] = —&= —— =< x*— 1< —
4 4

So,|f(x) — f{1)| < 2(=€)
But if a =10, we have
f(x) — f(10) = x* — 100

So, if x= 10.%, then |x —al = |1IZI.§— llZI| =§:::

[

But f(x) - f(10) = x* - 10% = (10.5) - 10?

el N[l
—(J_IZI.4+J.IZI)(J_IZI.4 m)
50
4

1 1
.4—33;2( )

So, the same & = % does not serve the purpose. Hence & depends on € as well as the point a

at which the continuity is discussed. We know consider a situation where & depends only on
€ and is same for the all points in X.

4.3.3 Definition (Uniform continuity) ;
Let (X, dy) and (Y , dy) be metric space. A mapping f: X— Y is said to be uniformly
continuous on X, if given €2 0 there exists a & =0 such that for all x,y €X and

di(xy)< 8 = do(f(x),f(y)) < E.

4.3.4 Definition :
A subset A of metric space (X , d) is called dense in X if A= X, that is the closure of A in

X.

4.3.5 Theorem :

Let (X,d; ) be a metric space and (Y,d, ) be a complete metric space and let A be a
dense subspace of X. If f is uniformly continuous function of A into Y then f can be extended
uniquely to a uniformly continuous mapping g of X into Y.
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Proof : :Let (X,d; ) be a metric space and let A be a dense subspace of X.
Let (Y,d;) be a complete metric space and let f:A — Y be a uniformly continuous

function.

If A =X, then the conclusion is obviously true.

We there fore assume that A= X.

Define the function g:X— Y in the following way.

If X is the point of A, define g(x) = f(x)

If X is a point of x—A, define g(x) as follows:
Since A is dense in X, every point in X—A is a limit point of A, so that x is a limit point of A.
Hence there exists a sequence {a,} in A which converges to x. Now {a,} is a convergent
sequence, it is a Cauchy sequence in A.
Since f:A— Y is uniformly convergent, given €= 0, there exists a & = 0 such that for all a,b

€A and d;(a,b)< § =dx(fa),f(b))< ........ (1)

Again since {a,} is a Cauchy sequence is A, corresponding to & >0, there exists a
positive integer N, such that
di(am,ay) <9, for allm,n =N ........(2)

From 1&2, we have given, €>0 , there exists a positive integer such that
dx(f(am),f(ay)) < €,for all m,n =N.
This shows that {f(a, )}is a Cauchy sequence in (Y,d ).
Now Y being a complete metric space, the Cauchy sequence {f(a, )} in Y .converges to
apointye Y.
That is,
lim, .. .f(5,. =¥

We shall now show that y depends only on x but not on the sequence {a,}.
To see this let {b,} be other sequence in A such that b,—x as n—o0.Then
dl(an,bn) = dl(an,x)+d1(x,bn)
— 0+0 as n—oo [Since a,—X, by—X as n—wo |
So by the definition of uniform of f : A—Y, it follows that (as in the above discussion)
di(f(an),f(by))— 0 as n—oo.
This gives, (Since f(a,)—Y as n—o),
di((y,f(bn))—0 as n—oo.
or, f(b,)—y as n—oo.
This shows the limit y depends upon x.
Thus, for xe X-A, we now define g(x) =y,
where y = limf(an ) and {an} in the sequence in A such that a, —x as n—o0
In this way g is defined for all x in X.
We next show that g is uniformly continuous.
Lete= 10

Since f:A— Y is uniformly continuous corresponding to 0, there exists a >0 such that for a
and a' in A we have.
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di(a,a) <8 = d, (f(a),f(a*)) <e............ (3)

Let x and x' be any point on X such that d; (x,x') < 8. It suffices to show that d, (g(x),g(x"))
<e.

By the definition of g,

1

for some sequences {a,} and { a} }in A.

. 1
x=lima,and X = a

By the triangle inequality we have
dl(an’ ﬂ-i) £ d]_(a‘ x: + d(x.'xlj + dl(xlrai .

nt

Since a,—x, and al = x!as n—oo, and d(x,x")<4, it follows from the above inequality
di(an, al) <& for all sufficiently large n. Hence, by (3), it follows that
d(f(an),fal)) <€..oovverinnnn. 4)

for all sufficiently large n.
= d,(g(a,).g(a})) <€, for sufficiently large n, since a,, a; € A.
= f(an) = g(an) and f(ay) = g(ay,).
Taking limit n—oo, this gives
Lim da(g(an).g(az)) < €
Since g(a,)—g(x) and g(at)—g(x"),this gives
da(g(x).g(x) < €.
(Since {xp}— x and {yn} =y =d(Xn,yn)—d(X,y)).
That is for x,x'€X. and d;(x,x') < §

da(g(x),g(x) < E.
So g:X— Y is uniformly continuous.

Uniqueness :
We know that if f: A — Y and g:X— Y are continuous maps such that f(a)=g(a) for
every acA , then f(a) = g(a) for every ae A4, the closure of A.
In the theorem A=X. so if g and h are two uniformly continuous extensions of ffA—Y,
then g(a) = h(a) for all ac A, the g(x) = h(x) for all xe 4=x
So g=h on X and g is unique.

4.4 ISOMETRY:

4.4.1 Definition :

Let (X,d; ) and (Y,d;) be any two metric spaces A mapping f:X— Y is called an
isometry (or, an isometry mapping) if
di(x,x") = dy(f(x),f(x")) for all x,x" X.
That is isometry between metric spaces is, distance preserving mapping.
Clearly isometry is one-one correspondence.

4.4.2 Example :

Isometry on metric spaces is a uniformly continuous map.
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Solution : Let (X,d; ) and (Y,d) be any two metric spaces and f:X— Y be an isometry.
Let € >0. Choose 6=e€.
Then, for x,ye X and d;(x,y) < (=€), we have d,(f(x),f(y)) = di(x,y) < d=€.
(Since f'is an isometry)
Since 5(=€) depends on € only, fis uniformly continuous.

4.5 EXERCISES :

1. Let X and Y be metric spaces and let f be a mapping of X into Y. If f is a constant
mapping, show that f is continuous.

2. Let X be a metric space with metric d, and X, be fixed point in X. Show that the real
function f,_defined on X f, (x) = d(x,xo ) is continuous.

3. Let X and Y be metric spaces and A be a non-empty subset of X. If f and g are continuous
mappings of X into Y such that f(x) = g(x) for every x in A, show that f(x) = g(x) for every x
in A.

4. Let X and Y be metric spaces and f a mapping of X into Y. Show that f is <>continuous
f'(F) is closed in X whenever F is closed in Y.

4.6 MODEL EXAMINATION QUESTIONS :

1. Define the concept (i) continuity at a point x of a metric space X and (ii) continuity in X.

2. Let X and Y be a metric spaces and let f:X — Y be a mapping. Show that f is continuous
at xo € X if, and only if, x,—X¢ = f(X,) —>1(X¢)

3. Let (X,d; )and (Y,d>) Y be a mapping. Show—>) be metric spaces and let f:X — Y be a
mapping. Show that f'is continuous on X if, and only if, x,—>X= f(x,) —>1(Xo), for all xe X

4. Let (X,d; )and (Y,d,) be metric spaces and let f:X— Y be a mapping. Prove that f is
continuous if, and only, if f l(G) is open in X whenever G is openin Y.

5. Let X be a metric space and A be a dense sphere of X. Let Y be a complete metric space.
If is a uniformly continuous function of A into Y, then prove that f can be extended
uniquely to a uniformly continuous mapping g of X into Y.

6. Define isometry on metric spaces and show that it is a uniformly continuous mapping.

7. Let x be a metric space. Show that any two distinct points of X can be separated by open

spheres.

8. Show that the subset[0,1) is not an open set in the set of real numbers R.

9. Let X be a metric space. Prove that (i) Any union of open sets in X is open, and (ii) Any
finite intersection of open sets in the X is open.

10. Prove that every non-empty open set on the real line is the union of countable disjoint

class of open intervals.

11. Define(i) an interior point of an subset A of a metric space and (ii) the interior Int(A) of a

subset A of X. Prove that A is open if, and only if, A = Int(A).

12. Define a limit point of a subset A of a metric space X. Give an example to show that a

limit point of a subset of a metric space need not to be point of the sub set.

13. If any metric space, show that the empty set and the full space X are closed sets.

14. Show that a subset F of a metric space X is closed if, and only if, its component F'is

open.

15. Define a closed sphere in a metric space in a metric space. Show that a closed sphere in a

metric space is a closed set.

16. Let X be a metric space. Prove the following
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(i) Any intersection of closed sets in X is closed.
(i1) Union of finite number of closed sets in X is closed.

17. Define the closure of a subset A is a metric space X. show that A is closed if, and only if,
A=A

18. Let X be metric space and let a be a subset of X. If x is a limit point of A, show that each
open sphere centered on X contains an infinite number of distinct points of A.

4.7 SUMMARY :

A continuous mapping is a function that maps one topological space to another in a way that

preserves certain properties. It is a generalization of the concept of a real valued continuous
function.

4.8 TECHNICAL TERMS :

e Continuity on a space: A function f is considered continuous on the entire metric space
X if it is continuous at every point in X.

e Open Set: A set U in a metric space (x,d) is open if for every x in U, there exists €= 0
such that B(x,€) € U.

e Relationship with sequences: A function is continuous if and only if for any sequence
{Xn} in X converging to x, the sequence {f(x,)} converges to f(x).

4.9 SELF ASSESSMENT QUESTIONS:
1.The continuous image of a compact metric space is ...

a. Not compact
b. Compact

c¢. Disconnected
d. None of these

Ans: b
2. The function f: (0, 1) — R defined by f(x) =1 x is

a. Both continuous and Uniformly continuous
b. Uniformly continuous but not continuous

c. Continuous but not Uniformly continuous

d. Neither continuous nor Uniformly continuous

Ans: ¢
4.10 SUGGESTED READINGS:

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book
Company, New York International student edition.

Dr. M. Gnaneswara Reddy



LESSON -5
TOPOLOGICAL SPACES-DEFINITIONS AND

SOME EXAMPLES

OBJECTIVE:

A topological space is a set of points with a structure that defines how close points are
+¢ This structure is called a topology and it’s a collection of subsets of the set.
% The elements of the topology are called open sets

STRUCTURE :

5.0 Introduction

5.1 Topological Space

5.2 Answers to SAQ’s

5.3 Model Examination Questions
5.4 Summary

5.5 Technical Terms

5.6 Self Assessment Questions

5.7 Suggested Readings

5.0: INTRODUCTION:

The word topology, a branch of Mathematics, which is de-rived from Greek words has
literal meaning, “ the science of position”. A topological property is a property of a “
topological space” which is possessed by all topological spaces that are “homeomorphic” to
the space. Topology can be defined as the study of all topological properties of topological
spaces.

If we think of a topological space as a diagram drawn on a rubber sheet a
homeomorphism may be thought of as any deformation of this diagram. A topological
property, then would be any property of the diagram which is in- variant under any
deformation. That is why topology is also called a rubber sheetgeometry.

In this lesson we start with the definition of a topology on a set, a topo-logical space, a
subspace of a topological space, the topology generated by a class of subsets of a set and
provide a good number of examples. A special typeof topological spaces , called metric spaces
deserve separate attention because of their resemblance with the real line. We make a
preliminary study of these spaces as well.

5.1: TOPOLOGICAL SPACES :

5.1.1: Definition : Let X be a non empty set. A class T of subsets of X is calleda topology on X
if it satisfies the following conditions.
1. The union of every class of sets in T is in T. ie. if {4,/i €I} is any class
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of sets in T indexed by a set 1. Then lJ;=; 4; O is in T and The intersection of every finite class
ofsetsinTisinitie C < T is anyfinite class of sets and G is the intersection of the sets in C then
G eT.If Tis atopology on X we call the ordered pair (X, T) a topological space.

5.1.2: Remark : In definition 5.1.1 condition

(1)is described by saying that T is closed under arbitrary unions while condition is
described by saying that T is closed under finite intersections.

5.1.3: Remark : The empty set is finite and the intersection of a family of subsets of X
indexed by the empty set is the universal set X. Like wise the union of a family of sets
indexed by the empty set is the empty set. Thus if ( X, T) is a topological space, then ¢ €T
and X €T .

5.1.4:SAQ : Show that condition (ii) of definition 5.1.1 holds if and only if
XeT,and AeT ,BeT = AN BeT

5.1.5: Example : Discrete Topology : Let X be a non empty set. For T we takethe power set
P(X) of X,T is a topology. That is clear since P(X) contains all subsets of X and hence is
closed under arbitrary unions and finite intersections. This topology is called the discrete
topology of X.

5.1.6: Example : Let X be a nonempty set and T = {¢, X } , Clearly T is closed under
arbitrary unions and finite intersections hence T is a topology on X. This topology is called
the indisecrete topology on X.

5.1.7: Example : Suppose X is a nonempty set. We take T to be the class consisting of
all A € X where

i. Either 4 =g or
X/A is a finite set

Then T is a topology on X. This topology on X is called the confinite topologyor the topology
of finite complements.

Sol : Let {Ai/iel} be any family of sets in T.
If UE'EIAE' = @then UEEIAE = Tby (1)

If U;eq4; # @then 4; = @ for some ig. Now

X —Uierdi = Nt X/A) S X0\A;,

Since X\A; , is finite, ;. (X \ A,] is finite.

= [;zq 4; satisfies (ii) so liesin T

Hence T is closed under arbitrary unions X4X =g so X C T.

IfAj,Ay areinTand A; NA; #¢dthenAd; = ¢ #A4;,50 ¥ — A, ¥ —A4;
are finite. Hence X — (4, NA4.) = (X — A,;)U (X — A,) is finite. Hence 4, N4, €T.
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Hence T is closed under finite intersection. Thus T is a topology on X.

5.1.8:SAQ:We fix a symbolw which is different from every natural number and write
IT=1TuU {x]}. The set T consists of all sets A where (i) A 17 or (ii) A € 11,20 € 4 and 1T\ A
is a finite subset of 11. Then T defines a topology on I1.

5.1.9: SAQ: If T{,T, are topologies on X it is not necessarily true that 77 (175
Is a topology on X. Give an example.

5.1.10:SAQ: If T is a topology on X it is not necessarily true that T is closed under
arbitrary intersections. Give an example.

5.1.11:Proposition: If {T,/i €I} is any class of topologies on a nonempty set X and
T = M, T, then T is a topology on X. Further if T is any topology on X such that T* € T,,
Vi€l thenT* ST,

Proof: T is closed under arbitrary unions: {4, \a € A} ST
=>{A\a EA}CTVi€E]

= A=U_,4, ETVi €1 (~T;is atopology)

= AETVi€El

=A€T

T is closed under finite intersections: If € =T is any finite family of subsets of X,
CCTViEl

=G = NyecA €T,V €I (Since T; is topology)
=G eN,,T,
=G eT

Since T is closed under arbitrary unions and finite intersections T is a topology on X If T'isa
topology on X such that T* © T, Wi €1 ,itisclearthat T* © T,

Comparison of Topologies:
5.1.12: Definition: Let X be a non empty set and Ty, T, be topologies on X.We say that T,
is weaker (= coarser) than T, and write in symbols 7| < T ifT] ¢ T . In this case we also

say that T, is stronger (= finer) than Tjand writeT) > T}.

Remark : The indiscrete topology T = {¢, X} alone is contained in every topology on X so
that T is weaker than every topology on X. Thus we may say that the indiscrete topology is
the “weakest” topology on X.
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Like wise the discrete topology P(X) consisting of all subsets of X is the “Strongest”
topology on X as it is stronger than every topology on X.

5.1.13:Proposition: Let A = {4, \a € A} be a collection of subsets of X. There is a unique
topology T on X such that

1. ASTand

2. T < T'*for every topology T' containing A.

Proof: Let C be the class of all topologies T' on X containing A.
Since P(X) € C, C nonempty if T —n T',T" € € by proposition 5.1.11 T is a topology on X.
Since ASTL,¥T'eCcACT.

If T'isany topology on X such that AS T'then T* € CsoT S T
Thus T = (g2 T* satisfies the required conditions.

If T, is a topology on X satisfying (i) and (ii),T* € " hence TS T,
Since T satisfies (i) and (ii)) T € Chence T; = T

Thus T, =T

This proves uniqueness.

5.1.14: Definition :Given 4 = {4 /a € A} & P(X), by the topology generated by A we
mean the topology T which is the smallest topology containing A.

T =n{T,/T, topology on X, AS T}
T is also called the topology generated by A.

5.1.15: Proposition : Given any collection {T,,/a € A} of topologies on X there is a unique
topology T on X such that

(1) T,ETVacA
If T, is any topology such that T, = T, Va € A then T & T}

Proof: Let C be the collection of all topologies on X that contain T, for every @ € 4 and Ty be
the intersection of all topologies in C.

To = Nprec T
By proposition 5.1.3 Ty is the smallest topology on X containing T, ¥ £ A.
Thus Ty is be required topology.

5.1.16:Theorem: Let X be a non-empty set and let T(X) be the class of all topologies on X.
Let = on T(X) be defined by T. = T iff T, €T, for To, T € T(X). Then (T(¥),=) in a
complete lattice.

Proof: Clearly the indiscrete topology is the least element and the discrete topology is the
greatest element in (T (X), <),
Let {T,},cx be a non-empty family of topologies on X.

Let Tl = n:rEf.‘. T:r
letd =[TET(X)/T, ETVa €V}
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LetT, = My, T
Thus T; and T, are topologies on X and it is easy to verify that
T, = g..b{T, [« € A} and

I,=Lub{T, /e ]

Hence (T(X) , < )is a complete lattice.

5.1.17: proposition: Let T be a topology on a nonempty set X. ¥ S X be a nonempty set and

T, = (¥ nY/V €T} Then Ty is a topology Y.

Proof:(1) T, is closed under arbitrary unions : Let {4,/i €1} be an arbitrary class of sets in T,. For
eachi€1,38, €T 3B, Y = 4

Hence U, 4, = U.,(B, n¥) = (U, B)n¥,Since T is closed under arbitrary unions U 8, € T
hence U4, € T,

(2) Ty 1s closed under finite intersections: Cleary ¥ €T;. So it is enogh to prove that 4 € T, and
BET, 2ANBET,.Since 4 €T, 34, €T; suchthatd =4, nY

Similarly 38, e T3 B =8, n¥.

Since 4, eTand B, €T, A, nB e T.Hence 4nB=(4 NB)NYET

Hence Ty 1s a topology on Y.

5.1.18: Definition : The topology T, = {A N¥ /4 € T} is called the relative topology on Y
and (Y,Ty) is called a subspace of (X,T). If (Y,Ty) is a subspace of (X,T) it is customary to

say that Y is a subspace of X.

In definition 5.1.14 the topology generated by a given family A of subsets of a set X (= ¢) is
described as the smallest topology on X containing the given family A. In the following
proble-m we provide a characterization for this topology.

5.1.19: Problem : Let X be a nonempty set and 4 & P(X) write T (A) for the family of
subset of X each of which is the intersection of a finite class of sets in A and To(A) for the

family of subsets of X each of which is an arbitrary union of sets in A. Prove that To(T(A))
is the topology generated by A on X by providing the following.

1) Ty(A) is closed under finite intersection and A € T, (A]

2) TH(A) is closed under arbitrary unions and 4 € T,(A4)

3) T=T5(T{(A)) is a topology on X and A ST, (T,(A4))

4) If T'is any topology on X containing A then T is contained in T
Solution: (1) Note that T5(T{(A)) is the family of all unions of finite intersections of set in A.
If A is empty, then T{(A) = {X} and T(T{(A)) = { ¢, X}. Clearly

{@, X} is the topology generated by A. So, we may assume that A is nonempty.
Let A= MN¢er, € €Ty(A) and B = Mg € € Ty (A) Where Fy, F, are finite subsets of A
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Then AN B = Mgy, € € T;(A) because F| U F, is a finite subset of A. Clearly 4 < T, (A).

(2) Let {A,/a €D} be any arbitrary family of sets in Ty(A). For each @3 a set
F, CA3 A, =N C.

Then F — Uyep By S Aand U ey A, = U es(Uces, €) = Uger, T E T2 (4)

Hence T, (A) is closed under arbitrary unions.

Cleard € T,(4).
(3) We claim that T = T»(T(A)) is a topology on X containing A. Clearly T contains ¢ and

X. From (2). T is closed under arbitrary unions. We show that T is closed under finite

intersections. For this it is enough to show that A€T, BET.
=>ANBEeT

Let A = Ui 4;and B = U, B; where A; €T.(A)and B; € Ty (A) fort € I'andj € J.

JES
Thend nEB = Uierj=; Cij where C;; =4;NB; since T; (A) is closed under finite

intersections (by 1)

A, NB;=C; €ET(AVi€landjE]

Since T is closed under finite intersections and arbitrary unions T is topology on X. Since
ACST(A) ETL(T(4)

(4). Let T'be any topology on X containing A. Since T is closed under arbitrary unions and
finite intersections, T1(A) <T; and hence T= To(T(A)) = T;.

This completes the proof.

We now consider special type of topological spaces called metric spaces. A metric on a set
X resembles the distance between real numbers and so several properties ofline distance on
the real line 5. may be extended to a metric space.

5.1.20: Propositions: Let (X,d) be a metric space and T4 be the class of all open sets in X.
Then T is a topology on X.

Proof: (1) Clearly gand X are in Ty.

Ta closed under arbitrary unions: Let {Gi/i €I} be any class of sets in Tq and
G=Ugb: . x€EG=xE0G; for some [E€I Since G; is open there exists

r=035 (X S G, G .Hence 5 (X) < G. Since this holds ¥x € G,G € T,.

(2) T4 1s closed under finite intersections: Let G; e Ty and GyeTy. x e G1NGy

=X G and also x €G.
=3 =0andn, =035, (x) EGand5_(x) EG,

=S5, (x)Nns (x) €6, NG
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If r=min{r,r}and v € 5,.(X) then
d(x,y) <r=d(xy) <r (i=12)
=yE 5,.__(:{) (i=12]
=yES, (x)NS5, (x) EG NG,
=5 (x)E6G, NG,

Since corresponding to every
xXEGNGIr>035(x)EG, NG, G,NG, €T, .

Hence T is closed under finite intersections. This shows that T j is a topology on X.

5.1.21: Definition: The topology T4on X defined in proposition 5.1.20 is called the topology
on X induced by the metric d or simply the metric topology corresponding to d or the usual
topology on the metric space X. The sets in Tqare called the open sets generated by the metric
d on the space X.

5.1.22: Example:the usual topology on the Real line X.

By an open interval in R we mean a set of the form (a,b)={x/x€X , a<x<b} where acX , b
e X . A closed interval is of the form [a,b]={x/xeX , a< x < b} and an open closed interval is
defined to be (a, b]={x/xeX , a <x < b}, and a closed. Open interval is defined to be [a, b) =
{ x i a< x< b}. The absolute value or modulus of xeX is defined by

xifx=0
x| = —xif <0
A ey

LetTy; ={G/G ERand ¥V x £ G,3ad > 0,such that (x —8,x +§) € G}.
Ty is a topology on R. This topology is called the usual topology on E.Verification on the

conditions for a topology.
(i) Ty is closed under arbitrary unions : Let {G;/ i € I} be an arbitrary class of sets in Ty and
G=UgG, . xEG=xEG for some i€l Since for any such i,
G,ET, 3603 (x—d8,x+8)EG, = (x—8,x+38)CSG.
This is true ¥x € G. Hence G € Ty
Ty s closed under finite intersections: Let G, € Ty, and G, € Ty,
XEG NG, =x€E G and x € G,
=346, 03 (x—0d,x+4d,) CGand
6,203 (x—0,x +36,) € G,

§ =min{d,, &}, (x—8x+8) S (x—8,x+6,)n(x—8,,x+5,)E G, NG,
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ThusxE G, NG, =35=03 (x—-35,x+35) 56, NG,
Thus Ty is a topology on |

Consider the real line R . We define a metric on R by d(x,y) = [x—y|. This is called usual

metric on [ . Note that the usual topology on E mentioned above is the same as the topology
induced by d.

5.1.23: Note:

The EuclideanE":

If n is a positive integer,R" stands for the set of all n-tuples (x1,x2.....Xn) where
x; ERfor1<i < n If n=1we write R' = E and identify (x1) with x. n tuples x =(x,

X2,....Xn) and y =(yz,......yn) are said to be equal if x; = yi for 1L =i =n. We definex+y =
X1 + Yo , Xn + yn). If @a €ER . We define ax = (ax,,....ax,). We define

llx|l = /%2 +x2 + -~ + x2 and call this the norm of the vector x.

7

on

This norm is called the Euclidean norm on " and " with this norm is called the Euclidean

space.

5.1.24: Def (Euclidean Topology):The metric d defined by d(x,y) = |[x—y|| is called the
Euclidean metric. The topology induced by the Euclidean metric is called the Euclidean
topology on R"

5.1.25: The Unitary space C: If n is a positive integer, C" stands for the set of all n-tuples

(zl....... zn) where z; £ © Vi, 1< i< n Ifx=1 we write C* = and identify (z) with z. If
z=(z,...z,)and z* = (z},....2}) € C". We say thatz = z* whenz, = z/ fer1 <i < n.
We define z + zt = (z, + z}. ...z, + z}) and fora € 0, az = (az,....az,)

For z £ C" we define ||zl = /|z,|* + -z, |* where z=(zy,.......... Zn)

We call ||z]|, the norm of the vector z.

5.1.26: Spaces &* and C™:

We write K for either & or © and K for the collection of all sequences {x,} where

x, £ K'¥n €11 We write K for all sequences {x,} ink " for which 7 _.|x_|* < =, The space
is Fcalled the infinite dimensional Euclidean space while C™ is called the infinite dimensional
Unitary space.

5.1.27: Example:
Let x be any nonempty set. The discrete metric d on X is defined by for x, ye X

. _(Oifx=y
d(x.y) = {1 if x %y
IfxeXand0<r <1, S(x)={yeX/d(x,y)<r<l1}={x}
Ifr>1 S0 = Ly eX /d(x, y)<r} ={y Iy € X}=X

Consequently, if G £ X and x € G,5,(x) £ G this implies that the induced

topology T consists of all subsets of X. Since T = P(X), the topology induced by the discrete
metric is the discrete topology on X.
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5.2: ANSWERS TO SAQ’s:

SAQ: 5.1.4: If T is closed under finite intersections, 4 € T, B £ T
= ANEB €eT. Assaid in Remark 5.1.3 X € T.
Conversely suppose 4 ET,BEET = An B £ T and also suppose X €T

Then T contains the intersection of a family of sets in T indexed by the empty set.
If {Ap,......... An} is a non-empty finite family of sets in T

then N, 4; = [I"IEZIE' Ai] nA,

Thus we can apply induction on n. If n =2 4, n4, €T by hypothesis. Assume that
i=y A, ET whenever 4; ET for1<{<n—1.Since 4, €ET and

A=MNZtA, then N, A, = AN A, € T by induction hypothesis. Hence the intersections of

n elements in T is in T whenever it happens for n — 1. So by induction this holds for all

n €N,

SAQ :5.1.8:

Suppose 4; € T and £, € T, If one of Al, A2 is a subset of IT then so is 4; N A, so
A N4 ET. If weA NA, then IN\A,, IT\A, are finite subsets oflN.Hence
A, nA4, = (I1\A4,)U (11\4,) is a finite subset of 11. So 4, N4, € T. Thus T is closed
under finite intersections aslithe intersections of an empty family lies in T by conditions
(2) of this questions and by SAQ 5.1.4. That T is closed under arbitrary unions can be
proved as in example 5.1.7.

SAQ: 5.1.9: X ={1,2,3}

T, = {¢. {1}, 31T, = {¢.{2}. X}

T,uT, = {¢.{1} {2} X}

{1,2}={1}u{2}erurT,

T, is a topology and T, is a topology but T,UT, is not a topology as

{1,2}={1}u{2}erurT,

SAQ:5.1.10: Let U, = {k/k € M,k = n}U{x}forn = 1.
Here Un satisfies (2) of SAQ 5.1.8. So U, €T, ¥n
{o} = N5z, €T

5.3: MODEL EXAMINATION QUESTIONS:

1) Define a topology on a nonempty set X and a metric on X. Show that every metric induces
a topology on X.

2) Let X be a nonempty set, T = {4/4 € X,A = ¢ or X/A countable}. Show that T is a
topology on X.
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3) Show that the class of topologies is a complete lattice with set inclusion.

4) If Ty, Ty are topologies on a set X show that T;\UT) is not necessarily a topology on X.

Show also that there is a topology T on X containing both T, and T, and which is
contained in every topology containing Ty, T».

EXERCISE:

1. Let X be a nonempty set and T be the class of all subsets of X whose complements are
countable. Also let ¢ € 7. Then show that T is a topology on X.
2. LetZ cYX. If T is a topology on X and Ty, T, are the relative topologies on Y and Z
respectively show that (Z,T,) is a subspace of (Y,Ty) i.e. Ty is the relative topology on
Z with respect to the topology Tyon Y.
3. Let X={ab,c}T= {¢,{a},{a,b}{a,c}X}. Show that {X, T) is a topological space.
4. Find all possible topologies on X when
(a)X={a} (b) X ={a,b} (c) X={a,bc}
Compare the topologies obtained in
(i) 4(a) (i) 4(b) (iif) 4(c)
5. Show that the relative topology on the set Z of integers as a subspace of the real line
with the usual topology is the discrete topology on Z.
6. Show that the indiscrete topology on a set consisting of at least two elements is not
metrizable.
7. Let B be the collection of all open intervals (a,b) in i, show that T5(B) is a topology on E
Let By be the collection of all intervals of the form (a,b) where aeQ and be O Show that
T(By) is a topology on K.
9. Are the topologies TH(B),To(B) in (7) and (8) equal ? Is any one of them equal to the
usual topology?

5.4 SUMMARY :

Topological Spaces are Mathematical structures that define abstract relations of closeness and
connectedness between objects in terms of relationships between sets rather than geometrical
properties.

5.5 TECHNICAL TERMS :

Topological Space: A set X together with a collection T of subsets of X, satisfying certain
axioms, is called a topological spaces.

Topology: The collection T of subsets of X is called a topology on X.

Hausdroff Space: A topological space X is said to be Hausdroff if for any two distinct points
x,y in X, there exist neighborhoods U and V of x and y, respectively, such that U n V=0

5.6 SELF ASSESSMENT QUESTIONS:

5.1.4:SAQ : Show that condition (ii) of definition 5.1.1 holds if and only if X €T, and
AeT

BeT = AnBeT



Topology 5.11 Topological Spacces-Definitions...

Answer: If T is closed under finite intersections, 4 ET,BE € T
= AnB ET. Assaid in Remark 5.1.3 X € T.

Conversely suppose 4 E1,86 €1" = AN B € I'and also suppose X €T

Then T contains the intersection of a family of sets in T indexed by the empty set.
If{Ay,......... A,} is a non-empty finite family of sets in T

then N, 4; = [HEZI“ Ai] n A4,

Thus we can apply induction on n. If n =2 4, N4, €T by hypothesis. Assume that
i=y A, ET whenever 4, ETfor1<{<n—1.Since A, €T and

A =M1 A;, then N2, A, = AN A, € T by induction hypothesis. Hence the intersections of

n elements in T is in T whenever it happens for n — 1. So by induction this holds for all

n €.

5.1.9: SAQ: If T{,T, are topologies on X it is not necessarily true that 77 [175
Is a topology on X. Give an example.

Answer: X ={1,2,3}

T, = {o.{1}. X}T. = {&.{2}. X}
T,UT, = {¢.{1}{2} X}
{1,.2}={1}u{2}eruT,

T, is a topology and T, is a topology but T; U T, is not a topology as
{1,2}={1}u2}enur

5.1.10:SAQ: If T is a topology on X it is not necessarily true that T is closed under
arbitrary intersections. Give an example.

Answer:Let U, = {k/k € N,k = n}U {sc}forn = 1.
Here Un satisfies (2) of SAQ 5.1.8. So U, €T, ¥n
{=} =N;-, €T.
5.7 SUGGESTED READINGS:
1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill

Book Company, New York International student edition.

Dr. M. Gnaneswara Reddy



LESSON -6
ELEMENTARY CONCEPTS IN

TOPOLOGICAL SPACES

OBJECTIVES:

X/

¢ Understand the basic definitions.

% Familiarize with topological properties.

* Develop understanding of topological operation.

X/

s Apply topological concepts to simple spaces.

X/

s Develop problem solving skills.

X/

¢ Understand the relationship with other mathematical structures.
STRUCTURE :

6.0 Introduction

6.1Concepts in Topological Spaces

6.2 The closure operation

6.3 Solutions to short answer questions
6.4 Summary

6.5 Technical Terms

6.6 Self Assessment Questions

6.7 Suggested Readings

6.0: INTRODUCTION:

The first countability axiom, the axiom of second countability are also introduced and the
famous Lindelof’s theorem along with simple but important consequences are proved.
Separability in relation to second count-ability is also discussed.

6.1: CONCEPTS IN TOPOLOGICAL SPACES:

6.1.1:Definition: Let (X, T) be a topological space . V' S X is said to be an open set or simply
Visopenin X or Visopenif V € 1. F S X is said to be a closed set or simply F is closed in
X

or F is closed if its complement F=X/F is open in X. If 4 € X, the closure of A, denoted by 4
is the intersection of all closed supersets of Ai.e.,, A =N {F\A € F, F is clased in X} A is dense
in X if 4 = X, In this case we simply say that A is every where dense or A is dense. (X, T) is
said to be a separable space or X is said to be separable if X has a countable dense subset.

6.1.2:Remark: Since the intersection of the empty family of sets (int) is the space X,
X € 1. Since the union of the empty family of sets (int) is the empty set ¢, ¢ € r.Then
¢ and X are open sets in X consequently,¢ and X are closed sets.

6.1.3: Examples : If X is a nonempty set, every subset of X is open, in the discrete topology
and hence every subset of x is closed where as in the case of the indiscrete topology the only
open sets are ¢ and X, hence the only closed sets are ¢ and X.
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6.1.4:Propositions: The class ) of all closed sets in a topological space (X, T)
has the following properties.

(g ELXEE

(i) AE I,BE I=AUBE I

(i) {A\iel} <2=MN; A4, EX

Proof : (i) follows by remark 6.1.2

We use De Morgan’s laws:

(AUB)' =A'nB'and

(M A EX

IfAeZand BeXx=>A'er,Ble

=A'nBl e

=(AUuB)le

> AUBEX

A EIVIiEI=AleETViel

=>U_ 4 et

= (N, 4) €T

=z, 4; EX

6.1.5: Corollary : The class > of all closed sets in a topological space is closed under finite
unions and arbitrary intersections.

Proof follows from proposition 6.1.4.

6.1.6:SAQ: Suppose Y is a class of subsets of a non-empty set X which is closed under finite
unions and arbitrary intersections. Show that ¥ = {4'/4 € Z} is a topology on X.

6.1.7: SAQ: If (X, d) is a metric space x € X andr = 0,isS,(x) = 5,.(x)? Justify your
answer.

6.1.8: SAQ: In a metric space (X, d) show that{x} is a closed ¥x € X.
6.2: THE CLOSURE OPERATION:

We have defined the closure of a set A in a topological space (X, T) to be the intersection of all
closed sets containing A. The set X is closed as ¢ e Y so that the collection of subsets of X that are
closed in (X,7) and containing A is nonempty. Moreover, the intersection of any class of
closed sets is closed so that A is a closed set containing A. Moreover, 4 is the “Smallest”
closed set containing A since every closed set F that contains A, also contains A.

We will prove soon that this closure operation assigning A4 to an arbitrary set A in X
satisfies “Kuratowski closure axions”. We will also prove that any operation on P(X)
satisfying these axioms induces a unique topology on X so that the closed sets in this
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topology are precisely those subsets of X that are in variant under this operation.
6.2.1: Proposition: Let (X,7) be a topological space the operation 4 — A from P(X) into
P(X) where 4 is the closure of A satisfies the following:

Ki:¢p=¢
Kp;:AcA
K;:A=Aand
Ki:AUE=AUF

Proof : By definition A =n{F/F is closed and F 2 A}. So AS F'v closed F2A4. In
particular when A = ¢, @ € ¢ since ¢ is closed. Then ¢ = ¢. This proves K.
IfAcX,thenAcn{F/AcF,Fisclosed}

Hence A € A

If AC X, then 4 isa closed setand clearly 4 € 4. Hence A € 4

Since A S A by Ko, it now follows that A € 4

Let A< X and S X . Clearly by Ko, € 4,

BS Bsothat AUB € AUBE. Since 4 U F is closed.
AUBCAuUFB.FutherAUE2AUB 24

Since AU B isclosed A S AUE. Similarly F € AUB

Therefore AUE S AUE

Hence AUE = A U B. This process K4

6.2.2:Theorem : Let X be a nonempty set. Suppose that with every subset A of X a set 4 is
associated and that this association satisfies the following “Kuratowski closure axioms”

) $=¢

2) ACAVACX

3) A=AVACS X and

4 AUB=AUBVASXandBE X
Then there is a unique topology t7and X such that a set 4 & X is closed in this topology if and
only if 4 = 4.

Proof: Let I ={A/A SXandA=A4} clealy p=¢pand XS XS X so that
X=Xhence peXand X € ¥

AeY,Be)Y = A=Aand B =B

= AuB=AUB=4AUB

> AUBe),

We prove that Y is closed under finite unions by using the principle of mathematical
induction on the number of sets. Clearly this holds when n =1 and that this also holds for n =
2 is proved above. Now assume that the union ofany n setsin Y isin Y.

LetAr,............. An+rsetin X. Then i

U:!=+11A: = (U:;lﬂij U A;'Hl

=UL 4 VA4, = UEI:?A:'
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Since A_., = A, _,, (U, 4 ) = U™, A, by induction hypothesis. Hence U?"}' 4,
This shows that, whenever Y is closed under union for n sets, ) is closedunder union for
3(n+1) sets.

Hence by induction Y is closed under finite unions.

We now show that ¥ is closed under arbitrary intersections . Let {4; /i € I} be any nonempty
class of sets in . Then 4, = A.Wi €]

Clearly MN..;4; € N,.; 4, (by 2). To prove the reverse inclusion we first note that A & B
=AUB=8

=AUB=B=A4AuUB,AS B(by2)

Since MN;;4;, SAViel, N, A SA =AViel

Since this is true Wi € I, Mo, 4, € M, 4;

This shows that (1 ., 4, £, 4,, hence [;.; 4; €X

Since N;z;A4; SA, Vie€el, N, A SA =AViEl

Since this is true Wi € 1,11, -, 4, € M., 4,

This shows that N,_; 4, € N, 4;, hence M;;; 4; €E

Thus Y is closed under arbitrary intersections. By SAQ 6.1.6 , it followsthat Y={A/A'e¥ }
is a topology on X.

A € X is closed in this topology.
sdleye(Al)Yl=4Aez=4=4
For uniqueness, suppose 7, is any topology on X such that A is closed in (X, 7,) if = A4 , for

every subset A of X. Then A is closed in (X,7,) © A =4 © Aisclosed in (X,T) ~ T =1,
This completes the proof of the theorem.

6.2.3: Corollary : Let Y be the unique topology on X obtained from the given operation
A—= A

from P(X) into itself as in the above theorem. Then for any 4 € X, the closure of A in (X, T)
is precisely . .

Proof : For clarity, the closure of A in (X,7) is denoted by A, for any subset A of X.
Note that

A=n{F/Fisclosed and F 2 4}

=N{F/Fand F 2 A}
SincedA=AdandA24,Ac4
But A is clo_sedandA_QA
A2A=(4A)24=2421

Thus A = A as required

6.2.4: Definition : A neighborhood of a point x is a topological space (X,t) is an open set

containing x. A class ¥’ neighborhood of a point x in a topological space (X,Y) is called an open
base at the point x(or for the point x) if every neighborhood of x contains a member of

6.2.5:Example : If (X, d) is a metric space and xe X ,the class of open spheres {S«(x) /1> 0}
is an open base at x because by definition every open set containing x contains Si(x) for some
r>0.
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6.2.6: Proposition : Let (X,7) be a topological space and 4 < X . Then
A={x/ xe X and every neighbored of x intersects A }.

Proof : Let B be the set specified on the right hand side. Let x € Aand V, any neighborhood

of x. If NA=¢,then AT V! Since V is an open set V' is a closed set containing A.
Hence 4 S V*.

Since x € A , x eV ! so that x ¢/ . This is a contradiction so that every neighborhood of
intersects A, hence A S B................ (1)

Now suppose that x € B. We show that x € 4, if x &€ 4 then (4)! is a neighborhood of x
since 4 € 4,4 N (A)* = ¢. This contradicts the assumption that every neighbourhood of x
intersects A. Hence x € A as required. There fore B € A. This , together with (1) yields
A=B.

6.2.7: Definitions : Let X be a topological space 4 — X . A point x € 4 is calledan isolated
point of A if it has a neighborhood V such that 7 ~ 4={x} A point xe Xis called a limit
point of A

if each of a its neighborhoods contains a point of A other than x. The set of limit points of A
is called the derived set of A and is denoted by D(A).

6.2.8: Remark : It is customary to call V\{x} a deleted neighborhood of x if Vis a neighborhood
of x. Thus x is a limit point of A if and only if every deletedneighborhood of x intersects A .

A limit point of a set A is not necessarily a point of a where as an isolatedpoint of A
must necessarily belong to A.

6.2.9: Proposition : Let X be a topological space and A be a subset of X, then

1) A=AUD(A)
11) A\D(A)is the set of isolated points of A.
1i1) D(A4) € A if and only if A is closed.

Proof : (1) If x € A , then by proposition 6.2.6 every neighborhood of xintersects A so that
if x & Aevery neighborhood of x intersects A in a point other than x so that x is a limit point of
A, hence x € D(A). Thus A € AU D(4).

On the other x € D(A) = every neighborhood of x intersects A in a point other than x so that x €
A.

Hence D'(A) € A. Since A S 4, AUD(A) € A

It is now clear that A = 4 u D (4).

(1)Ifx € 4 and x & D(A4) thereisanbd Vof x 3 V\ {x} N A = ¢ so that by (1) ¥ n A = {x). Hence
X is an isolated point of A.

Conversely if x is an isolated point of A, then x € A and there exists a neighborhood V of
x3 VA= {x}so that x  D(A). This implies that x € A/D(4) € A\D(A). Thus A\D(A4)
is the set of isolated points of A.

(2) Since A = AU D(A) and A is closed if and only if 4 = 4, if follows that A is closed if
and only if A = 4 U D(4) if and only if D(4) € A.

As a consequence we have the following theorem.
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6.2.10: Theorem :Let X be a topological space. Then any closed subset of X isthe disjoint
union of the set of its isolated points and the set of its limit points inthe sense that it contains
these sets, they are disjoint and it is their union.

Proof : Let A be a closed subset of X and i1(A) the set of isolated points of A.
Then i(4) EA,D(A) EA and by proposition 6.2.9. i(4) = A\D(A4) = A\D(A4) so that
i(A)nD(A)=¢and i(A) U D(4) = A.

6.2.11: SAQ: Let X be a non empty set and T={ ¢», X } be the indiscrete topology on X.
Determine {*o] for %o € X,

6.2.12: SAQ: Let TN = N u {co] and T be the topology on IN described in problem 25 of lesson
2. Determine D(A) and 4 for 4 T TN .

6.2.13:SAQ: Show by an example that D(A) is not necessarily closed for asubset A of

a topological space.

6.2.14: SAQ: Show that if (X,d) is a metric space and 4 & X then D(A) is a closed subset
of X.

6.2.15: Definitions : Let (X,T) be a topological space and A be a subset of X.The interior of
A, denoted by int(A) is the union of all open sets contained in A. A point x € A is called an
interior point of A if x € X int (A); i.e, x € V some open set ¥ & A4 equivalently some
neighborhood of x is contained in A.

6.2.16: Remark : It is clear that x is a boundary point of A if and only if everyneighborhood
of x intersects A as well as its complement A,

6.2.17: Theorem : Let X be a topological space. Then any closed subset of X isthe disjoint
union of its interior and its boundary; in the sense that it is their union.

Proof : Let A S X be a closed set and 3(4) = A n A* the boundary of A. When A is closed
D(A)=AnAl € 4 , clearly int(4) € A . If x € int(4), then some neighborhood V of x is
containedinAsothat V NA* = ¢andso x & d(4).

On the other hand if x € d(A4),x € 4 and every neighborhood V of x intersects A' so that

V & A . This implies that x g¢int( A). Hence int(4) n @(4) = ¢.
Clearly x € A and x is not an interior point of A , every neighborhood V of x intersects A'

and A so that x € d(4). Hence 4 = int(4) n d(A4).

This completes the proof.

6.3: SOLUTIONS TO SHORT ANSWER QUESTIONS :
SAQ: 6.1.6: Use De Morgan’s law :

(Mie1 Vi) = Uier Vit and (Ugeq Vi)' = Nyt V1
V.ewiel=Vez=N_,Vex= (U, V) ez
=U, V,ET

If1if finiteand V, € ©vi €L, VI €TV, €1

=N V/ €
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= (U:’EIVEJI EX=>U,V,er

SAQ :6.1.7: Let X be a set with at least two points and d be the discrete metric
on Xif x €X, then §,(x)={x}

Since the topology induced by this metric is the discrete topology every
subset of X is open hence closed . Thus 5, (x) = {x}

However 5, [x] = {y € x/d(x,y) <1} =X

Thus it is not necessarily true that in a metric space 5, (x) =5, [x]

SAQ :6.1.8 : Let (X,d) be a metric space and x € X . If X = {x}, {x} is closed.Suppose {x} #
X.

Then X\{x} = ¢pWy € X\\{x},r =d(x,y) >0

We show that S§r;_(y) © X — {x}. This holds since z € Sr;_(¥)

= d(y,z) < <. Since D(y,x) = r,z # x50z € X\{x}

Then Sry () © X — {x}. This shows that X\x is an open set. Hence {x} is a closed set.

SAQ: 6.2.11: We consider (X, j), ] = {¢, x}.

Suppose x4, € X. If x € X and # x; , then x is the only neighborhood of x in X. We have
fro} 0 (X \ {x}) = (o)

Therefore x is a limit point of the set {x}.

We have {x,} n (X \ {x}) = ¢

And so Xo is not a limit point of the set {x,}.{x,} = X

SAQ: 6.2.12: We consider

Suppose A < M is a finite subset. Then D(A) = ¢ and hence A=A
Suppose A is infinite.

Consider a neighborhood V of « . By definition V= N\ V is finite; therefore there are at least
two points X,y in A which are not in V'. Thus x,ye V.

At least one of them is different from oo . Thus A N (V \ {o0}) = ¢ .
So oo is a limit point of A

Letn €M . Then {n} is a neighborhood of n.

we have AN ({n} \ {n})=4¢.

So n is not a limit point of A

Hence D(A) = {0} and A = U {0}

SAQ: 6.2.13: We consider a set X with at least two elements with the topology

T ={¢, X}. In SAQ 6.2.11. We have seen that the set X\{x} is the set of limit points of {x}.
Since X contains at least two elements X\{x} is not empty and is not equal to x. Therefore it
is not a closed subset of X:

D({x}) is not a closed set.

SAQ: 6.2.14: Let z be a limit point of D(A). To show that z € D ( A) we have to show that z
is a limit point of A. Let V be a neighborhood of z. Since z is a limit point of D(A), 3ay € D (
A)NV suchthaty#z.Sincey eV3anr>05S;(y)c V. Since d(y,z) >0 we may choose
r 50 <r <d (x, z). Sincey €¢ D (A), 3 an xe5.(¥y)NA3y+x. Since
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x€ S (v),0<d(xy) <r<d(v.z)sothatx#z.Alsox € S;(y)cV .Thusx eV A

and x # z . Since every neighborhood V of z contains x # z >x € A, z is a limit point A.
There fore D(A) is a closed subset of X.

6.3 SUMMARY:

The concept of topological space is only one link in the chain of abstract space constructions
which forms an indispensable part of all modern geometric thought. All of these
constructions are based on a common conception of space which amounts to considering one
or more systems of objects-points, lines, etc.

6.4 TECHNICAL TERMS:

e Topology: A collection of subsets of a set X, satisfying certain axioms.
e Open set: A subset U of X that belongs to the topology.

e Closed Set: A subset A of X whose complement X-A is open.

e Neighborhood: A set N containing an open set U with x€U

e Interior : The largest open set contained in a set A, denoted by int(A)

e Closure: The smallest closed set containing a set A, denoted by cl(A)

6.5 SELF ASSESSMENT QUESTION:

6.1.6:SAQ: Suppose Y is a class of subsets of a non-empty set X which is closed under finite
unions and arbitrary intersections. Show that ¥ = {4'/4 € Z} is a topology on X.
Answer: Use De Morgan’s law :

[niel V;] = U:‘Elvil and [Ueeivejl = nz‘Elpil

Vewiel=Vex=2nN_V ex= (U, V) X

= UV er
If1if finite and V; € T¥i €I, V/ €IV, €[
=Nig V/ €L

= (Ui, V) EZ= Uy V€T
6.1.7: SAQ: If (X, d) is a metric space x € X andr = 0,is5,.(x) = 5,.(x)? Justify your
answer.

Answer: Let X be a set with at least two points and d be the discrete metric

on Xif x €X, then §,(x)={x]}

Since the topology induced by this metric is the discrete topology every

subset of X is open hence closed . Thus 5, (x) = {x}

However §,[x] = {y Ex/d(x,y) £ 1} =X

Thus it is not necessarily true that in a metric space §,(x) = 5, [x]
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6.1.8: SAQ: In a metric space (X, d) show that{x} is a closed ¥x € X.

Answer: Let (X,d) be a metric space and x € X . If X = {x}, {x} is closed.Suppose {x} # X .
Then X\{x} # ¢¥Wy € X\\{x},r =d(x,y¥) >0
We show that Sr_ () © X — {x}. This holds since z € Sr;,_ ()

= d(y,z) <. Since D(y,x) = r,z #xs0z € X\{x}
Then Sy, (v) € X — {x}. This shows that X\x is an open set.

Hence {x} is a closed set.

6.6 SUGGESTED READINGS:

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill
Book Company, New York International student edition.

Prof. L. Madhavi



LESSON -7
OPEN BASES AND OPEN SUB BASES

OBJECTIVES:

¢ Understand the definition of open bases.

% Understand the properties of open bases.

¢ Understand the definition of open subbases.

¢ Understand the properties of open subbases.

¢ Apply open bases and subbases to topological spaces.

STRUCTURE:

7.0 Introduction

7.1 Open Bases and Open Subbases

7.2 Separability and second countability
7.3 Solutions to Short answer questions
7.4 Model examination questions

7.5 Summary

7.6 Technical Terms

7.7 Self Assessment Questions

7.8 Suggested Readings

7.0: INTRODUCTION :

In the lesson , the first countability axiom, the second countability axiom are introduced and
the famous lindelof’s theorem along with simple but important consequences are proved.
Separability in relation to second count-ability is also discussed.

7.1:OPEN BASES AND OPEN SUB BASES:

7.1.1:Definition: An open base for a topological space X is a class 3 of opensubsets of X
such that every open set in X is the union of class of sets in R . If )} is an open base for X
sets of 9} are called basic open sets.

7.1.2:Proposition: Let (X,T) be a topological space and R < T . R is an open base for (X,T)
if and only if xe G < Y= there exists a Be R such that xeBc G.

Proof: Let R be an open base, xeG < T. By definition, there exists a class
{Bi/iel} c R . Clearly B; < G. Thus there exists iel such that xeBi < G and Bie R .
Conversly suppose this condition is satistied. Let GeT for each xeG there exists a Bse R >

xeB«c G, {B«/ieG} = R and clearly G = U,.-¢B... Hence ‘R is an open base for (X,T).

7.1.3:Remark: Let us recall that for any class of sets B, To(B) is the class of sets that are
unions of members of B. Thus we may rephrase the definition of anopen base as follows:

A class of open sets $R is a topological space (X,T) is an open base if and only if TH(R) =
Y.
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7.1.4:Examples: Let X be a non empty set and Tq be the discrete topology on X. For each
xeX, let By = {x}. Then g = {Bj/xeXj} is an open space for (X, Ty)
Reason: Let us recall that every subset of X is open in the discrete topology.

Thus if G X, ¢ = U, B,.
Since Bxe R VxeG, G is the union of a class of sets in R .
Hence $R is an open space for (X,Ty).

7.1.5:Example: For the real line R with the usual topology T4 the class B of all open
intervals(a,b) where aeR and beR is an open base.

Reason: By definition, G is an open set in the usual topology if and only if
VxeG3Jad: >05>.

Ik =(x-0r ,x+0:)cG.

Clearly IxeB and ¢ = U, L.,

7.1.6:Definition: Let (X,T) be a topological space. A class Y of open subset of X is said to
be an open sub base for (x , y) if the class B = Ti(y) is an open base for (X,T) where Ti(y)
confute of finite intersections of members of Y i.e, AeTi(y) such that 4 = [z F.

Elements of Y are called sub basic open sets in (x,y).

7.1.7:Example:If aeR write (— © ,a) = {x/xeR and x < a} and (a, © ) = {x/xeR and a <
x}a <b; The class Y ={(a,b)/acR, b = or a=— o, beR} is an open sub base for the real
line with the usual topology.

Reason: We know that the class B = {(a,b)/acR, beR} is an open base for

the space R with the usual topology.

IfaeR and beR, (a,b) = (— w0 ,b) N(a, 0 )eTi(y)

Further (=0,a) = U,._(x,a) € ¥and (b,0) = U, .. (b,x) EY

Thus (—c2,a) and (b, =) are the sub basic open sets

Hence (a,b)eTi(y)

Thus Bc Ti(y), since B is an open base, Ti(y) is also an open base. Therefore y
is an open sub base for R.

7.1.8:Theorem: Let X be any nonempty set and T be an arbitrary class of subsets of X, then

T can serve an open sub base for a topology on X, in the sense that T>(Ti(t )) is topology on
X.

Proof: That T>(Ti(t )) is the topology on X containing T is proved in problem 5.1.19. By
definition T2(Ti(t )) is the collection of all sets which are arbitrary unions of members of
T1(t ) hence Ti(7 )is the open base for this topology.

Thus 1 is an open base for this topology.

7.1.9:Example: The collection R of all open spheres is an open base for the Euclidean
topology on R?.

Reason: By definition G = R? is open in the Euclidean topology if VxeG
Janr>053xeS:(x) = G. Hence R, is an open base for the Euclidean topology on R2.
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7.1.10:SAQ: The collection B, of all open rectangles is an open base and thecollection of
all open strips is an open sub base for the Euclidean topology on R?.

Countability axiom:

7.1.11:Definition: A topological space (X,T) is said to satisfy the first count- ability axiom
or simply by first countable if every point in X has a countable open base (X,T) is said to
satisfy the second countability axiom or simply be second countable if there is a countable
open base for (X,T).

7.1.12:SAQ: Every metric space is first countable

Second countability axiom implies first countability axiom where as the reverse
implication does not hold. Moreover a sub space of a first (or second) countable space is
first ( or second) countable. These two types of conditions play an important role in
reducing the number of open sets in test cases.
We now prove the central fact about second countable spaces namely Lindelof’s theorem
and its consequence which is mostly used.

7.1.13:Lindelof’s Theorem: Let X be a second countable space. If a non empty set G of X
is represented as the union of class {Gi/iel}of open sets then G can
be represented as a countable union of G;s.

Proof: Let f= {B,/n € N}be a countable open base for X.

Let Jo={n € N/ B, < G} for some i € [ such that B, < G; .Among all such i’s we fix one
and denote this by in, ie., B, < G;_Since Jo is countable . Clearly {G; /n € Jo} is a sub
class of {Gi/i € I}. We claim that G = U,,¢; G; clearly U,¢; G; < G,

Letx G, then x € G; for some i. Since P is an open base, there exists an integer n > 1 such
thatx € B, < G; . Thenn € Jy x € B, C G;_ , by the choice of I,.

Thus x € U, ) G; .

Hence G € U,.; G, . There fore 6 = U, ., G;

7.1.14:Theorem : Let X be a second countable space. Then any open base for X has a
countable sub class which is also an open base.

Proof : Suppose ( X ,t) is a topological space which is second countable and we are given
a basis {Vj/i€l}j for 7, indexed by a set I. We show that there is acountable subset Iy of I such

that {Vi/ielp}is an open base for t . Since ( X ,t ) is second countable, there is a countable
open base R = {B, / n €N} for 7. For each n € N there is a countable subset I, of I (by
Lindelof’s theorem) such that B, = U; ¢ V;.

Let Iy = U, oy I,,. Then Ij) is a countable subset of .

We show that V = {V; /i e I} is an open base for 7. Let us recall that for any class Y < P (X
).T> (Y ) stands for the class of all sets which are unions of members of Y. Since R is an
open base fort, To=(R)=r.

Since B, = U, Vi, B, =To(V)

Hence Y=T>(B)c T> (V') .Since V< Yand Y is closed under arbitrary unions.

T> (V)< thence Y = T>(V). Thus Vis a countable sub class which is an open base for 7.
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7.2: SEPARABILITY AND SECOND COUNTABILITY :
7.2.1: Proposition : A second countable topological space is separable.

Proof : Let (X' ,t ) be a topological space with a countable open base {B,/ neN}.
LetJ={n/B,+ ¢}.

For each n € J. Choose x, in B, . The set H = {x, / n € J} is clearly countable. If x € X and
V is any open set in X containing X, then there existsan € N>x € B, < V. So thatx, €V
Thus every neighborhood of x intersects H. Hence H = X i.e., H is dense in X. Thus X is
separable.

7.2.2: Remark : In general separability does not imply second countability (see excercise7)
For metric spaces these two notions are equivalent as is evi- dent from the following
theorem.

7.2.3: Theorem : Every seperable metric space is second countable.

Proof : Let X be a seperable metric space with metric d and A be a countable dence set
we may enumerate the elements of A as (ag, ap, ,a,).

For a fixed n, let R}, = {S(ay)/reQ, r> 0}, clearly %R , is countable.

Hence # = U,,., #,, is countable. We show that 9} is an open base for (X,d).

Clearly elements of §g are open spheres and hence are open sets. If V is any open set and
xeV,3ad>0>58s(X)c V. Since A is dense, 3 an ane Ss5/3 (X)

Choose reQ, r.038/3<r<238/3

Since d(x, an) <0 /3<r, x€ S;(an).

yeSi(an) = d(y,an) <r.

=d(y,x)c d(y, a,) +d(x,a,) <r+ 8/3+6/3 =6

= ye Ss (x). Hence Si(an) < Ss (X).

Thus x € Sr(an) < S5 (x) < G.

Since Si(an)e Rin < R, it follows that VGeJ and xeG,FJa R € R >xeBcG.
Hence B is a basis for (X,d)

Since B is countable, (X,d) is second countable.

7.2.4:Example: The Euclidean space R with the usual metric is seperable, hence
second countable.

Proof: We use Archimedean principle which says that if o €R and a >0 there exists a
natural number n such that n > o .

As a consequence given aa € R, be R,a < b thereexists xe 03a<x<b.

From this it follows that if x € R and €> 0,3y €Q > x—e<y < x so that ( x— €, x+ €)
contains a point of Q other than x. If V is neighborhood of x. 3an e> 05 (x—€,x+t )V
. Since (x— €, x+ €) contains ay €0 —{x},y €V N O —{x}. Hence x is a limit point of Q.
Since this

is true for every x € R, R @ < R . Hence R = § . Thus R is separable.

7.2.5:Example : R" with the Euclidean metric is second countable, hence separable.
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Proof : We use the fact that if A;.......... A, are Countable then so is Aix.......... xAn. Since
Q is separable. Q" = Qx Qx........ xQ (n times) is countable. Let x = (x; .....%,) ER"; and
V be a neighbourhood of x.

Then 3€= 0 3 S_.(x) € V.choose y, EQ Bxi—%{}ri :’:xi--l-% andx; # v,

Then v = (v .....v,) € QPand d(x, ¥) = {Z%,lx, — v,|*}z < {T%,€%/n): =€. Thusy=
x and y €Se(x) < V. Since every neighborhood of x contains a point of Q" other than x, x

€@™ . This is true for every x € R" so that R" € @® < R" hence R" = @". Hence R" is
seperable.

7.3: SOLUTIONS TO SHORT ANSWER QUESTIONS :

7.1.10:To prove that B, is an open base we have to show that every open rectangle is an

open set and for every open set G is R? and x e G 3 an open rectangle R such that x e R = G

. Towards this end it is enough to show that if

R=(a,b) x (c,d) and x = (x1, x2)e R, 3ad >05Ss (x) c Rand ifr > 0 and

yeS-(x)3 arectangle S=(a, f)x(y,0)32ye S S (x).

Letx =(x1,x2) €(a,b)x (c,d) =>a<xi<bandc<x,<d

o= %min{x1 —a,b—x,x,—cd—x,},¥Y = (v.y,) € S5(x)

=d(xy) <8 = (x,— )+ (x— )" < 87

>l =yl <8&|x,—y,|<é

=y, €Elx; -8,y td)=2a<x;—d<y <x;+8<b similarly ¢<1y, <d that
v € (a,b). Thus S5 (x) € (a, b)x(c.d).

Again , if r = 0 and

v = v,y ) ES (x),d(x,yv) <rif § =r—d(x,v),5;(yv) ©5,.(x). The above argument
shows that 5;(1) contains a rectangle 5§ = (a, b)x(c, d) containing y.

Hencey e S Sr(x).

7.1.12: Let (X, d) be a metric space and x € X . Then {Si» (x) / n €M}is a countable
collection of open sets which form an open base at x. For this let V be a neighborhood of x
is the induced topology 3 and ¢ > 0, such thatx € Se(x) < V.

If nENandn= é ,then E}E,S 1 (x) ©5.(x) €V. Thus every neighborhood of x

contains § v (x) for some 1 € M. This completes the proof.
7.4: MODEL EXAMINATION QUESTIONS :

1. Define an open base for a topology r . Show that given any nonempty family 7 of
subsets of a nonempty set X there is a unique topology 7 on **** for which Y is an open
sub base.

2. State and prove Lindelof’s theorem.

3. Show that every open base of a second countable topological space contains a countable
sub family which is a base.

4. Define first countable topological space and second countable topological space. Show
that a second countable topological space is first countable butthe converse is not true. Show
that in a second countable topological spaceevery open set is a union of a countable family
of open sets.

5. State Kuratowski’s closure axioms and prove that any closure operation®-" satisfying
these axioms induces a topology ron X such that for any subset A of X, A = A iff
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X\A €1,

6. Show that in a topological space X, T ), for any
ASXA=AUD(A) = {x € X/ every neighbourhood of x intersects A}

7.  Is a metrizable space first countable ? Justify.
8.  Show that in any topological space (X, 7 ), int(A) is the “Largest” open set contained
in A more precisely.

(1) Int(A)is an open set,

(2) int(A) EA.IfBis any open set 3 BE A4, Then B c int(A)

9. Let X beanonempty set and consider the class 7 of subsets of X consisting of the empty
set ¢ and all sets whose complements are countable.For definiteness let X = R, the real line.
1) Is X first countable ?
2) Is X second countable ?
3) Find 4 when A is the set of even integers.
10. Let (X, t) be a topological space, 4 x . Show that A is dense in 4 when 4 is
treated as a sub space of (X, 7).
11. Let (X, ) be atopological space and 4 c X . Show that the following conditions are
equivalent.
1) A is closed and has no isolated points
2) A =D(A)
A < X is said to be perfect, if A satisfy one of the above two conditions.

12.  Let C be the cantor set in [0,1] obtained by removing the middle onthird at every
stage. Show that C is perfect

13.  Forany Ac (X, 7)show that the int (4*) = (A)*
14. Show that A = 4 iff A contains it boundary.

15. Let (X, 7) be a topological space for A < x . Show that int (4) = ¢ if and only if
non-empty open subset disjoint from A. Such sets A are called no where dense sets.
16. (a) Show that a closed subset a of (X, 7) is no where dense iff A' is dense
(b) Consider that the real line with the usual topology

(1) Is Q dense ?

(1) Is Q now where dense

(111) Is Q Closed

(1v) Is Q open ?
17. Show that the boundary of a closed set is nowhere dense. What is theboundary of Q
in R with the usual topology ?
18. Show that the set of isolated points of a second countable space iseither empty or
countable.
19.Show that (X, 1) is second countable and Y < X is uncountable then D(Y) # ¢

20. Let (X, 1) be a topological space and A c X . Show that boundary of A = ¢ if and
onlyifA erand A1
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7.5 SUMMARY:

An open base is a collection of open sets within a topological space that can be used to
construct all other open sets by taking unions of its elements. While an open subbase is a
collection of open sets where taking finite intersections of its elements generates a base for
the topology, essentially acting as a smaller building block for creating the full set of open
sets

7.6 TECHNICAL TERMS :

Base: A collection of open sets in a topological space that generates the topology.
Open Base: A base that consists only of open sets.

Base for a topology: A collection of open sets that generates the topology.

Subbase: A collection of open sets in a topological space that generates a base.
Standard Base: The collection of all open intervals in the real line is a base for the
standard topology.

7.7 SELF ASSESSMENT QUESTIONS:

7.1.12:SAQ: Every metric space is first countable

Answer:Let (X, d) be a metric space and x € X . Then {Si» (x) / n eM}is a countable
collection of open sets which form an open base at x. For this let V be a neighborhood of x
is the induced topology 3 and & > 0, such thatx € Sz (x) = V.

If nENandn=> é ,then i}E,S‘ 1 (x) ©E5-.(x) € V. Thus every neighborhood of x

contains S1; (x) for some 7 € N. This completes the proof.

7.8 SUGGESTED READINGS:

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill
Book Company, New York International student edition .

Prof. L. Madhavi



LESSON -8
WEAK TOPOLOGY

OBJECTIVES :

«» The weak topology allows for more convergent sequences and compact sets than the
norm topology.

« The weak topology is a powerful tool for studying these.

% The weak topology helps analyze convergence of sequences and series in infinite-
dimensional spaces.

% The weak topology is useful in applications to optimization, quantum mechanics, and

differential equations.

STRUCTURE:

8.0 Introduction

8.1 Continuity

8.2 Weak Topology

8.3 Exercise

8.4 Summary

8.5 Technical Terms

8.6 Self Assessment Question
8.7 Suggested Readings

8.0: INTRODUCTION :

In this lesson, we first define partial ordered set, lattice, complete lattice and weak topology
and prove the theorem that the collection of all topologies on X forms a complete lattice
under the relation is weaker than. We then turn to our attention to prove properties of
continuous functions real or complex functions defined on a topological space X.

8.1: CONTINUITY :

Definition : Let X,Y be topological spaces. A mapping f: X — Y is said to be continuous at
xoe X if for every neighborhood V of f(x¢ ) there is a neighborhood U of x¢ .such that f(U)
<V.

8.1.2 : Example : Let X be any nonempty set. Equip X with the discrete topology. If Y is any
topological space and f: X—Y is any map and xo is any point of X, f is continuous at Xo
because every subset of X is open with respect to the discrete topology and in particular for
every open set V containing f(xo), U=f1(V) € X is an open set.

8.1.3 : Note: Let X,Y be topological spaces and f: X—Y be any map. f is said to be
Continuous at every point of X if and only iff'!(V) is open in X for every open set Vin Y.
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8.1.4 : Definition : Let X and Y be topological spaces and f:X—Y be a mapping.

1) fis said to be continuous if £!(G) is open in X, V open sets G in Y.

2) fiis said to be open if f(G) is open in Y V open sets G in X.

3) fis said to be homeomorphism, if fis a bijection and is both continuous and open.

4) f(X) is said to be a continuous image of X if f is continuous.

5) f(X) is said to be a homeomorphic image of X if f : X— Y is continuous, one-one and

open.

8.1.5 : Remark : Some authors prefer to define continuity of f in terms of continuity at every
point of X. However 8.1.3 confirms equivalence of these two definitions.

8.1.6 : Example : If X is a nonempty set and t;, 75 are respectively the indiscrete topology
and discrete topology on X respectively then the identity map I: X— X is clearly a bijection.

When the domain space X is equipped with the discrete topology every set in X is
open in T; . where as the only open sets in 7; are ¢ and X. Thus

a)If X has more than one point I: (X, 7;,)—(X, 7,) is not continuous.
b)As mentioned in 8.4.1 : (X, 1,)—(X, T;) is continuous.
¢)If X has more than one element and x € X, I({x}) = {x} # X and is nonempty so

that I : (X, 1,4)—(X, T,) is not open, hence is not a homomorphism.

8.1.7 : Let (X,7) and (Y,o) be topological spaces. For mapping f:X — ¥ prove that
following
are equivalent.

a)f is continuous.
b)f!(F) is closed in (X, T)for every closed set F in (¥, o)

O)f(A) € F(A)VAC X

8.1.8 :Theorem :Let X,Y be topological spaces.'R be, an open base for X and ¢ an open

subspace for Y. Then the following are equivalent.
a)f: X — Y is continuous.

b)f ~*(B) is open in X for every basic open set Bin Y.
¢) f~H(B) is open in X for every BE g

Proof : (a) = (b) is clear

(b) & (¢) since o € T, (o) and T,(o Jis an open base for

(c) = (a): Let Vbeopenin Y, x € X and =f(x) E V.

Then since Ti( o) is an open base for the topology on Y, IB€Ti( o) such that YeBc V .
Since Be Ti( 6), 3 a finite number of sub basic open sets Bi........ Bn such that B = (112, B,.
Since y €B,y € B, for 1 < i < nby (c) f (B,)is open in XV i.

Hence f=1(N%,B,) = N, f~(B,) is open X.

Sincey = f(x) EB,,x € f }(B,)Vi,sothatx € N, f1 (B,) = F1(N%, B,)

Thus x € 6 = NP=, f~1(B,) and G is open in X.
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Further f(G) = f(f~*(Nx, B)) = f(F*(B))cBCY.

Hence fis continuous at X. Since this holds ¥x € X.fis continuous on X.

8.2. WEAK TOPOLOGY :

8.2.1:Definition :Let P be a non-empty set. A partial order relation in p is a relation which is
symbolized by = and assumed to have the following properties.

Following Properties:

1) x= x for every x in P (reflexive)

1) x< y and y=< x imply x=y (anti- symmetry)

iil)) X =y and y < z, X = z (transitivity) if < is a partial order in P then (P,<) is called a
partially ordered set.

8.2.2 : Definition :Partially ordered set (L, <) is said to be a lattice. If for each pair of
elements there exists a supremum and infimum in L. If a, be L then the supremum of a and b
is denoted by avb. The infimum of a and b is denoted by aa b.

8.2.3 : Definition :Let (L, <) be a lattice. If there exists an element denoted by LL such that
x < IVx € L, then [ is called a supremum of the all element of L. If there exists an element,

denoted by O in L such that 0 < xW¥x € L then the element O is called the zero element in L.

8.2.4 : Definition :A Lattice (L, <) is called a complete lattice, if every infinite subset of L
has a supremum and infimum in L.

8.2.5: Remarks :

L.If (L,<) is a complete lattice then ’L’’ contains the zero element and the all element.
2.A lattice (L,<) is a complete lattice < (L, <)is a lattice with all element I and every non-

empty subset of L has the infimum in L.

8.2.6 : Definition : Let X be a non-empty set and let T and T2 be two topologies on X. We
say that T1 weaker than T (or) T2 is stronger than T; if Tic T .

8.2.7 : Definition : Two topologies T1 and T2 on a non-empty set X are said to be comparable
if either Tic T (or)Toc T .

8.2.8 : Example :Let X= {a,b,c} and let T = {@, X, {a}}
T={0, ¥, {a}, (b}, {a, b}}
Then T1ET,=T is weaker than T»

Also,T1 and T> are comparable
If Ts = {©, X, {b3} then T1£T; are not comparable

We have T3ET>

So,T; is weaker than T»
=T3 and T are comparable.
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8.2.9 : Theorem : Let X be a non-empty set. Then the collection of all topologies on X forms
a complete lattice under the relation “is weaker than”.

Proof : Let X be a non-empty set and let T be the collection of all topologies on X. Let
T={B, x}. Then T is a topology on X and this topology is called the indiscrete topology on

X.
=TiE 1.
Let Tp be the class of all subjects of X.(i.e, the power set of x) Tp is a topology on X and this
topology is called the discrete topology on X= Tj, € T.
= T is non-empty.
Now define a relations’” is weaker than’’ which is symbolized by the symbol < as
follows:-
fT,Toetand T, =T, = T, €T,

To prove that < is a partial order :
i)Reflexivity :

Let TE 1, we have
TET =T=<T

~= isreflexive on T
ii)Anti-Symmetry:

Let T1,T2€ 1 and suppose that
Ti=TsandT2 =T

=T1ET; and T2 =T,

=T1=T>

~-= is anti-symmetric on T

iii) Transitivity :

Let T1,T2,T3€ 1 and suppose that
T1=T, and T2=T;

=T ET; and T2ET3

=T,CT,

=T, =T,

<= 1S transitive on T.

By all these properties , <is a partial order on 1T and hence(t,<) is a partially ordered set.

To prove that(T,=) is a lattice :

LetTi T Et

=T, and T are two topologies on X.
=TinT, is a topology on X

=T nTe T



Topology 8.5

Weak Topology|

We have TinT>ET; and TinT2ET,

=T N, =TandT,NT, =T,

=T, NT, is lower bound of T; and T
Let Tz € T be a lower bound of T and T>
=T <T,andT, =T,

=T ET,and T, €T,

=T, CT,NT,

=T, <T,NT,

- T, n'T, is the greatest lower bound of T and T>
Thus each pair or elements in T hasa g.l.bin T
Let T, Te T

LetA={T €7/T, cTandT, C T}

Let T=Ny,T=T €T

Since T1<T and T,cT ¥T € A

We have Let T1S My, Tand ToS Ny T
=T ST'andT, ST

> <T ' T,<T*

=Let T! be an upper bound of T; and T2 in T
=>T,<TlandT, <T!

=T, CT andT,CT?!

=T*<T!

- T*1s the least upper bound of Ty and T>

Thus each pair of element in T has and least upper bound in .

- (T, =) 1s a lattice.

To prove that (z.<) is a complete lattice :

We have TE Tp ¥Te 1
=T =<T,NTET

= T}, is the all element in T
We have TIETVT € 1

=T is the zero element in T

Let B be a non empty sub collection of T

Then T*= M5 T is the g.1.b of B. Thus, every non-empty sub class of 7 has g.l.bin z

Hence (7, =) is a complete lattice with the zero element T and all the element Tp
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This completes the proof of the theorem.

8.2.10 :Problem : If f and g are continuous real or complex functions defined on a
topological space X, then f+g, af and fg are also continuous functions. Further more, if f and
g are real then fA g and fvg are continuous.

Proof : We shall prove that fg is a continuous at an arbitrary point x0e X, Let €= 0 be given
choose £, such that £, (|(xy)l) + (|(g(x,))|) + £f < =
Since f'is continuous at xo there exists a neighborhood Gi of Xo such that
x€ Gy = |f(x) — flxp)l < &
Similarly there exists a neighborhood G» of Xy such that
X € G, = |g(x)— g(x,)| <€, if G = G, NG, then G is a neighbourhood of x such that

x € G = |(fg)(x) = (fg)(x)| = If (x)g(x) — fxg)g(xp)]
= 1f(xdg(x) — F(x) g ()| + 1 () g(xp) — £x)g(xp)l
= 1) lg(x) — glxpd| + 1g(x) [1£ (x) — fxp) |
=€, If(x) — flxg)l +€, If (xg)| +€, If (x4)]
<ei+ 5 (If(x)l + lglx)) < &
Therefore fg is continuous at every xo€ X.
Next, we shall prove that £V g is continuous. We first observe that the sets of the form A=
(a,=0) and B=(-=0,b) form an open sub base for the real line and by showing that the inverse
image of any set is open.
We have (fVg) ' (4) = {x: max{f(x).g(x)} = a}
={x:f(x) = a} VU {x: g(x) = a}
This follows because the sets on RHS are f'!(a,0) are open sets of X (note that f and g are
continuous functions and (a,=0) is open).

Therefore (f Ag)'(A) is open. In a similar way we can prove that (fA g) is also continuous on
X.

8.2.11: Lemma : Let X be a topological space and le {f, } be a sequence of real or complex
functions defined on x which converges uniformly to a function f converges on x, if all f, ’s
are continuous, then f'is also continuous.

Sol : We shall show that f is continuous at an arbitrary point Xo in X. Since f, = f
FG) - £, ()] < &
Since f, is continuous and thus continuous at xo, There exists a neighborhood G of xo such
that for all x € G, |f;, (x) — £, (x) | < g

uniformly, given £ = Othere exists an integer no.Such that all x € X,

There fore

x€G=f(x) —flapl < |f(x) — fo, @)+ |fi, @) — f,

{E+E+E
— — —_=r
3 3 3

()| + |, (x) = F(x0)|

o

Hence the theorem.
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8.3 : EXERCISE :

8.3.1: Let X be a non-empty set and {X; }be a non-empty class of topological spaces. If for
each i there is given mapping fi of X into X; denoted by T is the weak topology on X
generated by fi's.

a) Show that T equals the topology generated by the class of all inverse images in X of open
sets in X ’s.

b) If an open sub base is given in each X; , show that T equals the topology generated by the
class of all inverse images in X of sub basic open sets in the X ’s.

c) If Y is a sub space of the topological space (X, t) Show that the relative topology on Y is
the weak topology generated by the restrictions of fi ’sto Y.

8.3.2 : In each of the following, we specify a set {f; } of real functions defined on the real line
R. In each case given a complete description of the weak topology on R generated by the fi’s

a) {fi } consists of all constants functions.
b){fi } consists of a single function f, defined by
f(x) =0, if x< 0 and f(x) =1, if x > 0.
c) {fi } consists of a single functions f defined by f(x) = —1, if x<0,f(0)=0 and
f(x) =1, if x > 0.
d) {fi } consists of a single function f, defined by f(x) =x for all x.

e){fi } consists of all bounded functions which are continuous with respect to the usual
topology on R.
f){fi } consists of all functions which are continuous with respect to the usual topology on R.

8.3.3: Let X,Y be topological spaces Zc X. If f: X— Y is continuous .
a) The restriction g of f defined by g(x) = f(x) for xe z is continuous on Z
b) f: X— f(X) is continuous.

8.3.4 : Let X,Y,Z be topological spaces; f: X ->Y and g : Y— Z be continuous show that g o
f is continuous.

8.3.5 : Give an example of a continuous map which is not open.

8.3.6 : Give an example of an open map which is not continuous.

8.3.7 : If f:X— Y is a bijection show that fis open if and only if f! is continuous.

8.3.8 :Letn = 2: fi: 2" — X be a mapping for 1< i < n.

Define f(x) =(f1 (X),£2 (X),..cvee.... ,fn (x)) show that f is continuous if and only if for each I,
1<i<mnf:R" = A" is continuous.

8.3.9 : If X and Y topological spaces write X ~Y is there if a homeomorphism from X onto
Y. Prove the following:

a) X~X

b)X~Y = Y~X

Because of this symmetry X and Y are said to be homeomorphic if X~Y
c) X~Y and Y~Z= X~Z.



Centre for Distance Education 8.8 Acharya Nagarjuna University|

8.4 SUMMARY :

Weak topology is a mathematical concept that describes the weakest topology on a space that
makes certain functions continuous. It’s a key concept in functional analysis, and is often
used to study linear operators and functional.

8.5 TECHNICAL TERMS :

Weak Convergence: Convergence of a sequence of function in the weak topology.
Weak Limit: The limit of a sequence of functions in the weak topology.

Weak Continuous: A function that is continuous with respect to the weak topology.
Indiscrete Topology, also known as the trivial topology, on a set X is the topology that
consists of only two open sets.

8.6 SELF ASSESSMENT QUESTIONS:

1. If =1 and 12 are two topologies on non-empty set X, then is topological space.
a.tl N12

b.tl U2

c.tl\12

Ans: a

2. Which of the following statements are true for a metric topology (X, d).
a. arbitrary intersection of open set is open

b. arbitrary union of closed set is closed

c. arbitrary union of open set is open

Ans: c

3. What is the closure of the set S= 1 — 11" : n € N in usual topology on R
a. (0, 1)

b. [0, 1]

c. None of these

Ans; c

4. An indiscrete topology has only elements
a. 1

b.2

c.3

Ans: b

5. Which of the following is true for discrete topology
a. complement of any set if open is open

b. every set is a open set

c. both (a) and (b)

Ans: ¢

6. Which of the following is true for discrete topology on X
a. the topology coincides with the power set P(X)

b. Weaker than indiscrete topology on X

c. neither of (a) and (b)

Ans: a
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7. Which of the following is true for a discrete topology on X
a. Weaker than any topology on X
b. only convergent sequences in discrete space are sequences that are eventually constant

c. both (a) and (b
Ans: b

8.7 SUGGESTED READINGS:

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book
Company, New York International student edition.

Prof. L. Madhavi



LESSON -9
N147 COMPACT SPACES

OBJECTIVES:

The objectives of this lesson are to.
* To understand the concepts of open subsets and open covers in a topological space.
* To understand the concept of compact sets.
» To understand the concept of closed subspace of a topological space.

STRUCTURE:

9.0: Introduction

9.1: Compactspaces

9.2: Model examinattion questions

9.3: Exercise

9.4: Summary

9.5: Technical terms

9.6: Answers to self assessment questions
9.7: Suggested readings

9.0: INTRODUCTION:

It is well known that closed and bounded sets of real nembers have important properties in
analysis. For example continuous real-valued functions defined on closed and bounded sets
of real numbers are bounded and uniformly continuous. Incontrast to this, the function

defined on the open unit interval (0,1) by f(x)= f is neither bounded nor uniformly

continuous.
An abstractization of this important property possessed by closed and bound sets of real
numbers gives rise to the concept of compactness for topological spaces.

9.1: COMPACTSPACES:

9.1.1:Definition: Let X be a topological space. A class {G,};-; of open subsets of X is said to
be an open cover of, X if X = U, _;&;. A sub class of an open cover which is itself an open
cover is called a subcover. A topological space X is called a compact space if every open
cover of X has a finite subcover. A subspaceYof a topological space X is said to be compact
if Y is compact as a topological space in its own right.

9.1.2:Example:
1. Every indiscrete space is compact (Ex:5.1.4).

Solution: If X is an indiscrete space , since X has only two open sets, every open cover has a
finite subcover. Thus X is compact.

2. Let X be any infinite set and let T = {V € X/X = Vis finite }U{¢} Then T is a
topology on X, called cofinite topology; The space (X,T) is called a cofinite topological
space.This cofinite topological space is compact (Ex : 5.1.6).

Solution: Let {V;};-; be an open cover of X. Since X = U;=, ¥; . Some V; is none empty say
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V... Then X —V; _is finite. Let X —V; = {X,..X,} . Suppose X, € V;_is for r = 1...n. Thus
X=V,uyu.. uv, uv, . SO{VE_, . } is a finite subcover. Hence X is

compact.
3. Every finite topological space X (i.e|X|<co) is compact.

Solution: Since X has only a finite number of open sets, every open cover has a finite sub
cover.

. X 1s not compact.

4. The open unit interval (0,1) with usual topology is not compact.

Solution: For each positive integer n, Let V,, = (:—!, 1). Then {V;,},=x is an open cover of

(0,1), but it has no finite subcover (0,1) is compact.
5. The set R of all real numbers with usual topology is not compact.

(==}

Solution: Clearly R = U=, (—n,n). For each positive integer n, let U,, = (—mn,n).
Then {U,}, .y is an open cover of IR, but has no finite subcover. Therefore B is not compact.

9.1.3: SAQ :Let Y be a subspace of a topological space X. Then Y is com- pact if and only if
for every class {H;};c; of open sets in X such that ¥ & U,; H; there is a finite subclass
{HE}E.E}. (J €I and] is finite) such that ¥ € U, H;

We now prove two simple, but useful, theorems.

9.1.4:Theorem: Any closed subspace of a compact space is compact.

Proof: Let Y be a closed subspace of a compact space X . Let {H,},.; be a Class of open sets
in X such that ¥ & U, ., H,.

Then X =Yu¥'c (U H)UY' S X whereY!isthecomplement of Y in X.

~ X =(U,;;H)uY"' SinceY is closed, Y is open.

Hence the class {H,};c; U {¥'!] is an open cover of X. Since X is compact,

There exists a finite subclass  {Hj,......... Hi } of {H;};c; such

that¥ =H, U...UH, uY™.
Hence¥ = (H, n¥)u..U(H,_nY)u(¥'n¥)CH, U..UH,.
By SAQ 9.1.3, Y is compact.

9.1.5 :Theorem: Any continous image of a compact space is compact.

Proof : Let f:X — ¥ be a continous mapping of a compact space X into an arbitrary
topological space Y. We claim that f(X) is a compact subspace of Y. Let {H,},-; be a class of
open sets in Ysuch that f(X) € U,_, H,. Since fis continous and Hi is open in Y. £ *{H,) is
open in X, for every i € I .Therefore {f "*(H,)},.; is a class of open sets in X.

Also f(X) S U H =Xcf (U, H)=Ugf'(H)=Xx=U,f '(H)
since X is compact, there exists a finite subcover {f*(H, ), ... f(H; )} of {f *(H; )}.
Hence X = f~*(H, )u ...uf~*(H, ) and this implies that f(X) € H; U ..U H, . Thus
f(X) is compact.

9.1.6 : Remark: Let us recall if X is a set and {4.}.; is a class of subsets of X, then we have
that (U;, ;_1!_]1 =My A;'l and, (M., Az‘]l = U, A}
We note the following :
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{A.},crisacovering of X &= X = U, 4,

= X—Uggd=¢

= (Ui A]I =9

= Nigdi=¢

We also note that a subset A of a topological space X is open iff its compliment Al is closed.
The following theorem is an easy consequence of the definition of compactness of a
topological space.

9.1.7 :Theorem : A topological space is compact= every class of closed sets with
empty intersection has a finite subclass with empty intersection.

9.1.8:Remark: In remark 9.1.6, it was observed that if {Ai} is a class of Subsets of a set X
then {4,},., is a covering of X if and only if MN,.; Al = ¢. As a consequence of this we have
that the class {Ai} is not a covering of X if and only if N;; A # ¢

9.1.9 :Definition : A class {4,};; of subsets of non-empty set X is said to have the finite
intersection property (simplify f.i.P), if every finite subclass of {4;},.; has non empty
intersection.

9.1.10: Theorem : A topological space is compact=: every closed sets with the finite
intersection property has non-empty intersection. Let us recall that an open base for a
topological space X is a class of open sets with the property that every open set is a union of
sets in this class .

9.1.11: Definition : Let X be a topological space .An open cover of X whose sets are all in
some given open base is called a basic open cover .

9.1.12: Remark: Sppose X is a compact space. Since every basic open set is an open set,
every basic open cover is an open cover and hence it has a finite subcover. We prove the
converse part in the following.

9.1.13: Theorem: Suppose {B,};.; is an open base for a topological space X. If every basic
epen cover by sets from {8, };<; has finite subcover, then X is compact.

Proof : Let {G,},.; be an open cover of X. Since {B, };;. Is an open base, each Gi is a union of
sets from {B;};c;. So there is subset I, &I such that G, = U, B, Put I, =U.;I.
Therefore X = U,; G, = UEE}.[UEE{_ B,) = U; ;. B;- Thus {B,},; is a basic open cover of X.
By hypothesis, there exists a finite subclass {B; .....B; } of {B};, such that ¥ = Ui_, B, .
Now for each B, , there exists _G:-k[rk €J) such that B, €G,.. So

X= Bz‘; ] E&‘i‘1 L GHr u.......U GJ,‘land hence X = GHr uU...u G,,‘l. Thus X is compact.

9.1.14:Definition: Let X be a topological space. A class {F;} of closed subsets of X is called

a closed base if the class {F/} of all complements of its sets is an open base of X. Sets F; are
called basic closed sets.

Theorem 9.1.13can be restated as follows.

9.1.15:Theorem: A topological space is compact if every class of basic closed sets with the
finite intersection property has non-empty intersection.
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9.1.16:Definition: Let X be topological space. A class {S;}of closed subsets of X is called a

closed subbase, if the class {5} of all complements of its sets is an open subbase.

9.1.17:Remark: Let us recall that an open subbase is a classes of open subsets of a
topological space X whose finite intersections from an open base. This open base is called the
open base generated by the open subbases. From the definitions 9.1.14 and 9.1.16, it is clear
that the class of all finite unions of sets in a closed subbase C is a closed base. This is called
the closed base generated by the closed subbase C.

We now prove a criterion for a topological space to be compact in terms of subbasic
closed sets.

9.1.8: Theorem: A topological space is compact if and only if every class of sub basic closed
sets with finite intersection property has non-empty intersection.

Proof: Let X be a topological space. Since very subbasic closed set is a closed set, it follows
from theorem 9.1.10 that if X is compact then every class of sub basic closed sets with f.i.p.
has non-empty intersection. Conversely suppose that every class of subbasic iclosed sets with
fi.p has nonempty intersection, Let {5,},c, be a closed subbase and let {E;};c;d be the
closed base generated by this subbase. So, each Bi is a finite union of S:s. By theorem
9.1.15, to prove the theorem it suffices to show that every class of basic closed sets from

{B};<; with f.i.p. has non-empty intersection: So, let {£.}, ; be a class of B;’s with f.i.p. We
have to show that M., B, # ¢ Let Jibe the family of all classes of Bi’s which contain
{B;};c; and have the fi.p. Since the class {B.};.,is in 3, the family 35 ¢.Then Jiis a

partially ordered set with respect to class inclusion. Let {B;} be a chain in J;. Put B = U, By

Since each By is a class of B;s, is also a class of B}s. Let {B;,, ..., B;_}be a finite By class of
sets in B, contained in some By. Since By has the fip B, N ...n B, # @ Since {Bn} is a chain.
The finite class {B; , ....., B;_} so B has the f.i.p. Therefore B € 3, and is an upper bound of By .
By Zorn’s lamma, 3, has a maximal element. Let {B };cx be a maximal clement in 3, Since
{By Jxex contains {B,},; , We have that N, . B, < N, B;. So, it suffices if we show that
Ny cx By = @. Now consider the class {By },cx. Each By is a finite union of sets in {5,}.ca
for instance let Bx=SiU........... US,. It now suffices to show that at least one of the sets
Si....,Sn belongs to (*) the class {Bj}yex . For, if we obtain such a set 5, for each Bk , then
the resulting class { Sﬂk}is a class of subbasic closed sets. Since S, is a [, B, # ¢ Since
54, € By we prove (*) by contradiction. We assume that each of the sets S;...... Sn 1s not in

the class {Bx}. Consider Si. Since each subbasic closed set is a basic closed set, S; is a basic
closed set.

Since Si is not in the class {Bi} the class {By}.ox U{5,] contains the class {By }icx
poperly. By the maximality property of {By}.cx U {S,} fails to have the f.i.p. So there exists
a finite subclass T} of {By}.cx such that 5, N (Mg B) = ¢ if we do this process for each of
the sets Si........ Sn we get finite subclasses Tj......... I, of {B.}icx such that
Sin(NgpB)=¢. for 1<i<nput =T U..... UT,. Now I is a finits subclass of

{By Jrex such that B, N (NzerB) = (S, N (Nger B)) ... U (S5 n(Nger B)) = ¢.

There fore T'U {B,.} is a finite subclass of {B,},ex with empty intersection. This
contradicts the finite intersection property of the class {B,},cx. Therefore one of the sets
Si...... ,Sn belongs to the class {B, },..x as defined.

By remark 9.1.8. the above theorem can be restated as follows.
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9.1.19: Theorem: A topological space is compact if every subbasic open cover has a
finite sub cover.

9.1.20: SAQ: Let X be a topological space and Y be a subspace of X If {V;},,is an open
subbase for X then the class {U.}..; where Ui =V, NY Vi €1 s an open subbase of
Y. We now prove the famous Heine-Borel theorem,

9.1.21:Theorem: (The Heine - Borel theorem) Every closed and bounded subspace of the
real line is compact.

Proof: Let E be a closed and bounded subspace of the real line R. E is bounded =E<[-n,n]
some positive integer n. Since E is closed in R, it. Is also closed in [-n,n]. By theorem 9.1.4, to
show that E is compact, it suffices to show that every interval of the form [a, b] is compact. If
a=Db, then [a, b] = {a} and hence it is compact, because every finite space is compact. So, we
may assume that a<b. Clearly the class of all intervals of the form (c,+o0) and (-0,d). where ¢ and
d are real numbers is an open base for R. By SAQ 9.1.20 by droping the empty set, the class
or all intervals of the form [a,d) and [c,b] where ¢ and d are real numbers such thata <c <b
and a < d <b is an open subbase for [a.b], Therefore the class of all interals of the form [a,c]
and [d,b], where a < ¢, d <bis a closed subbase for [a,b]. Let ¥ = {[a, ¢;1};e; U {[d;, h]};; be
a class of sub basic closed sets with f.i.p. It suffices to show that the intersection of all sets in
Y is non empty.

If Y contains only intervals of the form [a,ci] then the intersection contains a. Similarly Y
contains only intervals of the form [di, b], then the intersection contains b. So, we may
assume that Y contains only intervals of the form both the types. Define Define
d = sup{d,,[d.,b] € ¥}.Clearly d € [d,,b] ¥i. We complet the proof by showing
that d < ¢;¥i. Suppose that d > ¢; for some i0. Then ¢; , is not an upper bound of the
defining set of d.

< There exists a d, such that ¢; < d, . Thus [a,, Cz'n] n [c{,,n,b] = ¢. This contradicts the
f.i.p of Y. This completes the proof.

9.1.22: SAQ: Prove the converse of the Heine - Borel. theorem: Every compact subspace the
real line is closed and bounded.

9.1.23: Definition: A topological space is said to be countably compact, if every countable
open cover has a finite subcover.

9.1.24: SAQ: Prove that a second countable space is countably compact < it is cumpact.

9.2: MODEL EXAMINATTION QUESTIONS;
1. Prove that any closed subspace of a comact space is compact.

2. Prove that any continuous image of a compact space is compact.

Prove that a topological space is compact if and only it every class of basic closed sets
with the f.i.p has non-empty intersection.

4.  Prove that a topological space is compact if and only if every sub basic open cover
has a finite subcover.
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5.  State and prove the Heine - Borel theorem.

6.  Prove that every compact subspace of the real line is closed and bounded.

9.3: EXCERCISE:

1. Prove that a compact subspace of a metric spuce is closed and bounded.
2. Let X be a topological space. If Y and Ypare compact subspaccs of X, prove That

¥, U'Y; is also a compact subspace of X.
3. If {X;} is a non-empty class of compact subspaccs of X each of which is closed and if
MX; is non-empty. Show that ;¢ X; is also a compact subspaces of X.

4. Show that a continous real or complex function defined on a compact space is
bounded.

5. Show that a continuous real function defined on a compact space X attains its
infimum and its supremum.

6. If X is a compact space, and if {f,} is a monotone sequence of continous real
functions defined on X which converges pointwise to a continuous real funtion f
defined on X. show that {f,,} converges uniformly to f.

7. Prove9.1.6.
Prove that the class of intervals of the form (c,o)or(-o,d) where ¢, d are real
numbers is an open base for R.

*

9.4 SUMMARY:

We learnt that the open subsets and open covers in a topological space. A closed
subspace of a topological space. We have proved that closed subspace of a compact
space is compact and closed and bounded subset of Euclidean space is compact.

9.5 TECHNICAL TERMS:

1. Finite subcover; A finite collection of open sets that cover a space.
2. Open cover; A collection of open sets that cover a space.
3. Sub cover; A subcollection of an open cover that still covers the space.

9.6 ANSWERS TO SELF ASSESSMENT QUESTIONS:

9.1.4: Suppose that Y is a compact subspace of X. Let {H,}..,; be a class of open sets in X
such that ¥ € U, H,.
Then {¥ NH,};.; , is an open cover of Y. Hence, there exists a finite subcover, say
{1’ NH; ... yNH; } Therefore
(YnH )u...u(YnH,_)=Yn(H, U..UH )SH U..UH .
Since every open set G in Y can be written as G = Y N H, where H is open in X, the converse
part can be proved in a similar way.

9.1.11: Let H be any non-empty open set in Y and ¥ € H. Then H = G n'Y, where G is open
in X. Since y € G, there exists V;.....,V; in {V;};o; suchthaty €V, n...nV, € G.Then,
mn F mn
clearly y €V, n...nV;, S H. . {U},, is an open subbase for Y.
"
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9.1.13: Let Y be a compact subspace of the real line R. For each positive integer n, In = (-n,
n) Then, {I,},cy is a class of open sets in R such that ¥ U=, I, since Y is compact, there
exists positive integers ni,....... ng such that Y =1, v ., U, . Let n be the maximum of
ni,...nk. Then ¥ €, =Y < (—n,n) = ¥ is bounded. To show Y is closed it suffices to
show that its complementary Y' is open. Let x, € ¥1. For each x € ¥. Since # x, , there
exists neighbourhoods Vy of x and ¥, of xo such that ¥, n V,_clearly ¥ € U, V., . Since Y
is compact, there exists xi,...... Xm €y such that ¥ € V_ U..UV, . Let V..V, _ be the
corresponding neighbourhoods of xo. Put 6 =V, U ..UV, and H =V, n...NV, . Then

xeG=xeV, for some i=xéV,_ =>x&H The GNH=¢ and hence
x€ HE 6 < Y Thus Y!is open.

9.1.24: Let X be a second countable space. Since every countable open cover is an open
cover, it follows that if X is compact, then ‘it is countably compact.

Conversely suppose that X is countably compact. Let {G,}.-; be an open cover of X.

Then = U,; G; . By Lindelof’s Theorem there exists a countable subclass {G; ,G,....... } such
that X = U, ., G, thus {:Gi-"}reﬁi
finite subcover, say, {G;.G;,...... , G;_} . Since this is a finite subcover of {G.}.c; we have
that X is compact.

is countnble open cover of X. by hypothesis. There exists a

9.7 SUGGESTED READINGS:

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book
Company, New York International student edition.

Dr. V. Amarendra Babu



LESSON-10
PRODUCT SPACES

OBJECTIVES:

The objectives of this lesson are to.
% To understand the concepts of the product topology on a product space.
+»+ To understand the concepts of the subspace topological space.
% To understand the concepts of a open base for a topology.

STRUCTURE:

10.0: Introduction

10.1: Product space

10.2: Model examination questions

10.3: Exerciscs

10.4 Summary

10.5 Technical terms

10.6 Answers to self assessment questions
10.7 Suggested readings

10.0: INTRODUCTION:

In this lesson we introduce the notions of product toplology and product spaces. We
define these notions initially for two topological spaces for a better understanding and prove
that the usual topology on the Euclidean plane R? is precisely the product topology. We then
extend these notions to arbitrary class of topological spaces. We prove the main theorem of
this lesson, namely the Trychonoff’s theorem. As an application of this theorem we obtain the
General- ized Heine-Borel Theorem. We also define the notion of locally compact space and
some examples of these spaces are given.We obtain an equivalent condi- tion for a
topological space to be locally compact.

We begin with the notions of product topology and product space for two topological Spaces.

10.1: PRODUCT SPACE :

Let X, and X be topological spaces. Let us recall that the Cartesian product of the sets X
and X, is the set of all ordered pairs (x,,x,) with x €X and x, €X We denote itby X x
X,Suppose X=X x X .Let S be the class of all subsets of X of the form Gi1 x X2 and Xix G2

where Gi and G2 are open subsets of X; and Xo respectively. The topology on X. generated
by the class S is called the product topology. The open sets in the product topology are the
unions of finite intersections of sets in S. The set X equipped with the product topology is
called the product space or the product of the spaces X and X>.The product topology has S as
an open subbase.

It is clear that (G;x X,) N(X,x G,) = (G,NX,) x (X,NG,) = G;x G,There fore the open
base generated by S is the class of all subsets of the form G, x G,. Where G,and G,are open
in X,and X, respectively.

Define mappings P;: X—»x; by Pi(X) =xj, i =1,2 oo for all (x,\,x,) €X,
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PP, are called the mappings of projection.

let us recall that if X is non-empty T, and T, are topologies on X such that T & T, we say
that T , is weaker than T,. Further, the family of all topologies on X is complete lattice with
respect to the relation is weaker than.

10.1.1: Theorem: Let X, and X, be the topological spaces and let X be their product space.

Then the projections pi, for (i) = 1,2 are continuous. Moreover the product topology is the
weakest topology for which the projections are continuous.

Proof: If Gi is an open set in X; then p'(G1) = G1 x X2.Which is a subbasic open set X, so
p, is continuous. Similarly p, is continuous. Suppose T, is a topology on X for which the

projections p, and p, are continuous. Then for each pair of open sets G, and G, and X, and
X, respectively, the set G,x G, = (G, X X,) n (¥, X G,) = p7*(G,) np;*(G,) must be
open in T, Since the projections are continuous with respect to T. Thus every set which is
open in the product topology must be open in T.

10.1.2: Definition: A mapping ¢ from a topological space X into a topolclgical Space Y is
called an open mapping, if ¢(G)is open in Y whenever G is open in X.

10.1.3: SAQ: Prove that the projections Pjand P,are open mappings. Let us recall that the
Euclidean plane R? is a normed real linear space, where R? is the set of all ordered pairs (x]»

X5) of real numbers, under coordinate wise operations and norm

. T T
given by || (x,, x, )l = [, 1% + |x,]% .

10.1.4: Theorem: The usual topology on the Euclidean plane R? is precisely the product
topology of the usual topologies on R taken twice .

[

Proof: we know thut the, function d defined by
d(_(rj_r Sj_]r (r:r S:]) = ‘u'lflrj_ — I |: + Isl — 5 |:
is a metric on R%. We have to show that the topology induced by the metric d is precisely the
product topology. Suppose G is a subset of R? which is open with respect to the metric d, and
let (r,5) € G. Then there exists an €= 0 such that the open sphere 5 € (r,s) £ G. Let
V= EE—:} and W = SE—.':'\J which are open sets in R containing r and s respectively. We assert
that V. x W £ G and this will show that G is open in the product topology. If (x,y) EV x W,
thenx EVandy € W; thatis |r —x| < %and |s — | < 5,_
=
/ = = [ e~ A%
Thus d(r,s),(x,y) =+/lr —x|* + |s — y|* < \ (;) — (—T) =g and so (x,y)€ 5.(r,8) € G,

as desired.

Now suppose G is a subset of R? which is open with respect to the product
topology, and let (x.y) € G. Then there exists open sets V and W such that (x,y) EVx W &
G. Thus x € V and y € W, so there exist € z,€; >0 such that 5. (x) SV and
Se,(v) € W. Let €= min- {€ ,, € ;}, We claim that Se(xy) €5. {x) x5, - (¥) which will

show that G is open with respect to the metric d, since § Ex{x] x5, , (v) SV xWE G Now

if (,8) € 5:(xy) then lx —r| < Jlx — 7|2 4+ |y — s|? <e<e, and
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ly —r| < lx —r]* + |y — s|? <€<E€,, 50 (r,s) € Sc_(x) x5. lyl as desired.
We now prove that the product of two compact spaces is compact.

10.1.5:Theorem; If X and Y are compact spaces, then their product space X x Y is also
compact.

Proof: Let {W; };.. be an open covering of X x Y. We choose an xo in X and Consider {xo} x
Y. Corresponding to each y in Y, there is a A(y) € A such that (x,,y) € W(,,. Then there
exists a basic open set Uy x V(y) such that (x4.¥) € U, X V(¥) € W,

The class {V(¥)},<, is an open covering of Y. Since Y is compact there exist y|.......,y,EY

such that ¥ = V(y,) U .. U V(yy). LetUy,,,.....,Uy, . The corresponding neighbourhoods
of x0. Put U(x0) =U, n...... NU, . Then we have U(x0) x V(yr) €W,y for r =
I...... m and so U(x0) x Y S Wy, U...... U W, - It follows that corresponding to each x

in X there is a neighbourhood U(x) of x and there are finitely many elements
A(x,1) we.. A(x, m(x) ) in A such that U(x) xY Wi ey Yo U Wa o ()

Now the class {U(x)}#. .~r. =g 18 an open covering of X Since X is compact, it follows
Jit 't in T

that there are elements xi,.....,Xn, in X such that ¥ = U(x, ) U ....u U(x, ). So we have

XxY € (U(X)x Y)U....U (U(X,)xY) € Ui, Um0

=1 Wae)

m':.rl- nmo . . :
Thus {{W;L.;xi,i}}i_l }} is a finite sub covering of X x Y. Therefore X x Y 1s compact.
=1 Ji=
10.1.6: SAQ: Prove that if X and Y are topological spaces such thut their product space X x Y
is compact. then X and Y are compact.

We now extend the notion of product topology to arbitrary class of topological spaces. Let
us recall that the Cartesian product P;; X; of anon-empty class of sets {X;};c; is the set of
all mappings f of I into U, X; such that f(i)€ X; for every i €1. If f € P,_,X; then f is
denoted by = {x,},.; , where f(i) = xi for each i € I. For each i € I, the projection mapping pi
is the mapping from P, X; into X; defined by P,.({x;};c;) = x, for every {x;};c; € P X; .

10.1.7: Definition:

(1) Let {x;};<; be a non-empty class of topological spaces and let X =P, X; be the Cartesian
product of the sets {x;};; For each i € I, let P; be the projection of X onto X;. Let S be
the class of all subsets of X of the form, S= P, }(&,) where i € I and Gi is an open subset
of Xi. The topology on X generated by the class S is called the product topology. The set
X together with the product topology on it is called a product space of the product of the
spaces {X; }ie;

(i1) A subset of X is open with respect to the product topology if and only if it is a union of
finite intersections of sets in S. It is clear that S is an open subbase for the product
topology and is called the defining open subbase.

(ii1) A sub set B of X is in the defining open subbase = B = P '(G;), for some i €I and
some open subset Gi of X; & B = P_;(G,), where, Gi = X; for ¢ # i and Gi is an open
set in Xi = B = P71(G,), where Gi is open subset of X; which equals X; for all i’s but
one. The class of all complements of open sets in the defining open subbase- namely, the
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class of all products of the fonn P, F;, where Fj, is a closed subset of X; which equals X;

for all i’s but one - is called the define closed subbase .

(1v) The open base generated by the defining open subbase, that is, the class of all finite
intersections of Sub basic open sets, is called the defining open base for the product
topology. A subset G of X is in the defining open base if and only if it is of the form G
= P,;G;,where G;j is an open subset of X; which equals X; for all but a finite number of

1’s.
As in theorem 10.1.1 one can prove that all the projection mappings P; are

continuous and the product topology is the weakest topology for which the projections are
continuous. Also it is clear that all the projection mappings are open.

10.1.8: SAQ: Let f be a mapping of a topological space X into a product space P,.,X;. Prove

that f is continuous < p; of is continuous for each projection Pi-

10.1.9:Definition: Let X be anon-empty set, let {X;) be a non-empty. class of topological
spaces, and for each i let f; be a mapping of X into Xj. Note that if X is given its discrete
topology, then all the f;’s are continuous. The intersection of all topologies on X with respect
to each of which all the f;’s are continuous is called the weak topology generated by the f;’s.

It is clear that this is the topology on X which makes all the f;* s continuous and it is the
weak topology for which all the f:' s are continuous.

10.1.10: Remark: in view of the above definition. il is obvious that if {X;} is a non-empty
class of topological spaces and if X = P;X;is their product space, then. the product topology

on X is the weak topology generated by the set of all projections .We now prove the main
theorem of this lesson.

10.1.11:Theorem: (Tyconoff’s theorem) Let {Xi}i e/ be a non-empty class of topologlical

space and let X=P;c1X; be their product space. Then X is a compact if and only if eache
space X; is compact.

Proof: It X is compact, then each space X; compact space the projections are continuous

and onto. Hence, suppose that each space X; is compact. Let {Fi}l.e J be a non-empty class

of closed sets from the defining closed subbase for te Product topology on X . Therefore

each Fy is a product of the form FJ:Pie J F i, where Fij is a closed subset of X; which

equatls X; for all i’s but one. We assume that the class {Fj }j cJ has the finite intersection

property. To show X is compact, It suffices to show that ;. F;; # ¢. For a fixed

ie/,we show that the class {F all are closed subsets of Xj, has the finite

iiljes °
intersection property.

If {Fjjqemenn Fij,} is a finite subclass of {F then the corresponding subbasic

ij} jes
closed sets Fj .....F; form a finite subclass {F;};c;. Since {F;};c; has the finite



‘Topology 10.5 Product spaces

intersection property, we have that F; n .....n F; # ¢. Choose a point X in F; N .....N F; .
suppose ¥ = {x; }..; where x; € X for all 1 For
l1<sk<nx€F; =P.,F; =xEF, Therefore x EF, N....NF, and so
Fip, N N F, i @. Thus the class {F, } ;e has the finite intersection propert. Since X;
is compact M;e;Fi; # ¢. Choose point aj in [1;.; F;;. Since i €I was arbitrary, we have
that a; € HJEIF for all i. put a ={a;};; . Thus a; € Fi; for all I and for all |
= a € P Fjforallj = a€F forall j = M F; = MN;; F; # ¢, as desired.

10.1.12: SAQ : Show that the relative topology on a subspace of a product. space is the
weak topology generated by the restrictions of the projections to that subspace.

Let us recall that the n-dimensional Euclidean space R" is the normed real linear
space, where R" is the real linear space of all ordered n-tuples x = (x1.....Xn) of real numbers
under co-ordinatewise operations and the norm is given |lx|| = /|x,|* + .....+[x |* . The
topology on R" obtained from the norm is called the usual topology. As in theorem10.1.4,0one
can prove that the product topology on R" is precisely the usual topology.

We now prove an important consequence of Tychonoff s theorem namely the
‘Generalized Heine-Borel theorem

10.1.13: Definition: Let Rn be the n- dimensional Euclidean space. If (aji, b;) is a bounded
open interval or, the real line for each i=1.......... n, then the subset of R" defined by is called
an open rectangle in R", Similarly if [ai, bi] 1s a closed interval on the real line for i=1....n
then P2 (a, b,) = {(x, ....x,)/a; = x, < b, for each i} is called a closed rectangle in R".

10.1.14:Theorem: (The Generalized Heine-Borel theorem) Every closed and bounded
subspace of R" is compact.

Proof: Let E be a closed and bounded subspace of R", Since E is bounded, there exists a
real number K > 0 such that |[x [KK for all xeE. If x = (x1....... xn)€E, then
lx;| < llx|l < K and hence X, € [=K, K] for all i.

Thus E € P2, [—r,,1;] , where r; = k for all 1. Since E is closed in Rn, it is also closed in
the subspace PL, [—r.,7;]

Thus E is a closed subspace of the closed rectangle P2, [—r;,,r;] .To show E is compact it
suffices to show that each closed rectangle is compact as asubspace of R"

Let X = P2, [—a,,b;] be a closed rectangle in R", Each coordinate Space [aj, bi] is compact by
the Heine-Borel theorem. Therefore, by Tyehonoftf’s theorem.

X = PL [—a;b;] is compact with the product topology. So to show that X is compact as
a subspace of Rn, if suffices to show that the product topology on X is the same as its relative
topology as a subspace of Rn. By the above remarks, the product topology on Rn is the same
as its usual topology. By SAQ 10.1.12 the relative topology on X is precisely the weak
topology generated by the restrictions of the projections toX. It is clear that the restrictions of
the projections on R" to X are precisely the projections on X. Therefore the relative topology
on X as a subspace of R" is precisely the product topology on X. This is the desired result and
the proof of the theorem is we now discuss about the desired complete. result and the proof of
the theorem is complete.
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10.1.15: Definition: A topological space is said to be locally compact if each of its points has
a neighbourhood whose closure is compact.

10.1.16: Examples:

(1) Every compact space is locally compact. For, if X is a compact space and if xeX,
then X itself is a neighborhood of x such that X = X is compact. Thus X is locally
compact.The following example shows that every locally compact space need not be
compact.

(1) Let R" be the n-dimensional Euclidean space. If xeR™ and if S; {x) is any open sphere
centered on x then S; (x) is a neighborhood of x. Since the closure §,(x) is closed
and bounded. by the Generalized Heine Borel theorem, §_(x) is compact,Henee R"
is locally compact. But R" is not compact.

(111) Every discrete space is locally compact. Let us recall that a class of
neighborhoods of a point is called an open base at the point if each neighborhood of
the point contains a neighborhood in this class.

We now prove a necessary and sufficient condition for a topological space to he locally
compact.

10.1.17:Theorem: A topological space is locally compact if and only if there is an open base
at each point whose sets all have compact closures.

Proof: Let X be a topological space, Suppose that X is locally compact. Let x be a point in X,
Let H.. be the class of all neighborhoods of x whose closures are compact Since X is locally
compact the class :, . is non-empty, We prove that . is an open base at x. Let G be any
neighborhood of x. Since X . is locally compact. there is a neighborhood H of x such that its
closure H is compact.

Clearly GNH is a neighborhood of x and its closure G N H is compact, since G n H
is a closed sub space the compact space H (theorem 9.1.4), Thus GNHE % _ .
such that XEG N H € G . Therefore %, is an open base H, at x whose set all have compact
closures. Since X is a neighborhood B of x in #, such that € B & X . Now BE %, implies
B is compact. Thus X is locally compact.

Conversely suppose that there is an open base at each point whose sets all have compact
closures. Let x € X, then there exists on open base.

10.1.7: SAQ: Let Px : X x Y= X be the projection mapping. Then Px is continuous and onto,
Since continuous image of a compact space is compact. it follows that Py (XxY) =X is

compact. Similarly Y is compact.

10.1.8: SAQ: Suppose f is continuous. For each i. the projection mapping  P;;X; = X;is
continuous. There fore P of is continuous. Conversely suppose defininig open subbase of the
product topology on P,;X; . Then = P7*(G.), for some i and some open set Giin X ;.
Therefore f~1(5) = f* [:Pi‘l[Gij) = (p,0f)~*(G,) is open, since P; of is continuous.

Thus f is continuous.
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10.2: MODEL EXAMINATION QUESTIONS:

1. Prove thut the usual topology on the n dimensional Euclidean space R" is the same
as the product topology on it.

2. Slate and prove Tychonoff’s theorem.

State and prove Generalized Heiene - Borel theorem.

4. (a) Define a locally compact space. Prove that every compact space is locally
compact. Is the converse true. Justify your answer.
(b) Prove that a topological space is locally compact if and only if there is an open
base at each point whose sets all have compact closures.

(O8]

10.3: EXERCISCS:

1. Let X and Y be topological space. If Y is compact, prove that projection mapping of X x Y
onto X is a closed mapping (Let A and B be topological spaces. A mapping f:A—B is
called a closed mapping if f(F) is closed in B wherever F is closed in A)

2. Prove that if X and Y are metric spaces with metrics d| and d, respectively then the

mapping d defined by d ((a. b), (c,d)) = y/dZ(a.c) + d2(b,d) is a metric on X x Y
which induces the product topology.

3. Let X be a metric space with metric d. Prove that d is a continuous mapping of X x X
into R.

4. Prove that a closed subspace of a locally compact space is locally compact.

5. (a) Let X, Y and Z be metric spaces and let f be a mapping of the product space X x Y
into the space Z. Prove that f is continuous if and only if x,—»x and y,, -y implies f

(Xp>¥p) = f(x, y)
(b) Show that if f is continuous, then for any y in Y. the mapping fy:X — Z defined by fy

{x) = f(x.y) is continuous and for any x in X the mapping x:Y >Z defined by x/(y) =
f(x,y) is also continuous. (If we regard f as a function f(x,y) of two variables x and y. it is
customary to say that f is, jointly continuous in both the variables x and y whenever f is
continuous from the product space X x Y into Z

(c) What about the converse of the result stated in (b)? Justify your. answer.

10.4 SUMMARY:

We learrnt that the properties of open sets and closed sets in the Euclidean plane. We proved
that product of two compact spaces is compact, the product of any collection of compact
spaces is compact.

10.5 TECHNICAL TERMS:

1. Open base; A collection of open sets that generate the topology of space.
. Sub space; A subset of a topological space equipped with the subspace topology.
3. Topological space; A set equipped with a topology, which defines the open sets of
the space.
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10.6 ANSWERS TO SELF ASSESSMENT QUESTIONS:

10.12: SAQ: Let {X;} be a non-empty class of topological Spaces and let X= P;i Xi be their
product space. Suppose Y is a subspace of X. For each i. let P;: X — X be the projection
mapping and let P; /Y 1Y — X be the restriction of p; to Y. The product topology on X is

the topology generated by the class of all subsets of X of the form P *(G;) . where i is an
index element and Giis an open set in X;. Therefore the relative topology on Y is the topology

generated by the class of all subsets of Y of the form P71 (G,;)n ¥. Where i is any index

-1
element and Gi is any open subset of X;. It is clear that Pff},] (G,)=P7G,)nY

Henec the relative topology on Y is the weak topology generated by the restrictictions Pff}, of
the projections P; to y.

10.13: SAQ: Let G be an open subset of X, If p1 (G) = @ then clearly it is open Suppose P1(G)
# @. Let a € P1(G), then a = pj(x,y), for some (x,y) € G.Then there exists a basic open set
G1%Gy, where Gy and G, are open in X; and X, respectively, such that (x,y) €
G %XG2EG.Thus py(xy) € p1(Gy%Gy) Ep1(G),since p1(G%Gy)=Gp.Hence py is an open
mapping. Similarly, p, is also an open mapping.

10.7 SUGGESTED READINGS:

Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book
Company, New York International student edition.

Dr. V. Amarendra Babu



LESSON-11
COMPACT NESS FOR METRIC SPACES

OBJECTIVES:

The objectives of this lesson are to.
++ To understand the concepts of a metric space and understand its properties.
% To understand the concepts of compactness in a metric space and understand its
siginificance.
% Define and apply the lebesgue number

STRUCTURE:

11.0: Introduction

11.1: Compactness for metric spaces
11.2: Model examination questions

11.3: Exercise

11.4: Summary

11.5: Technical terms

11.6: Answer to self assessment questions
11.7: Suggested readings

11.0: INTRODUCTION:

The famous ‘Bolzano - weierstrass theorem’ (with Its converse) states that a non-empty
subset E of the real line is compact if and only if every infinitesubset of E has a limit point in
E. This motivates the concept of Bolzano -Weierstrass property for metric spaces. In this
lesson, we define this concept for metric spaces and prove that a metric space is compact if
and only if it has the Bolzano - weierstrass property. We also introduce the notion of
sequentially compactness for metric spaces and prove that a metric space is compact if and
only if it is sequentially compact. In this lesson, we further define the notion of totally
boundedness for metric spaces and prove that a metric space is compact if and only if it is
sequentially compact. In this lesson. we further define the notion of totally boundedness for
metric spaces and prove that a metric space is compact if and only if it is totally bounded. In
the sequel. we define the notion of Lebesgue number of an open cover in a metric space and
prove that every open cover of a sequentially compact metric space has a Lebesgue number.
By using this as a tool, we prove that any continuous image of a compact metric space is
uniformly continuous.

First, let us define. the following very important concept.

11.1: COMPACTNESS FOR METRIC SPACES:

11.1.1: Definition: A metric space X is said to have the Bolzano - Weierstrass property if
every infinite subset of X has a limit point in X.

11.1.2:Theorem: Every compact metric space has the Bolzano-Weierstrass property.

Proof: Assume that the metric space X is compact.We show That every infinite subset of X
has a limit point in X. Suppose thatA is an infinite subset of X With no limit points. Since
each point xeX is not a limit point in A, there exists an open sphere 5, ( x) centered on x
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such that S, (x) N A < {X}.Since the class {5, (x)}— forms an open covering of X, there

must be some finite Subcovering X =UgL; 5, (x). Therefore

A=4AnXx =UL, (A ns;,,x_) € {x,....x,} and so A is finite. A contradiction thus every
H

infinite subset of X must have a limit point in X.

11.1.3: SAQ: Prove that a compact subspace of a metric space is closed.

Let us recall the following definitions, If X is a metric space withmetric d and if x is a point
and {xXa} 1s a sequence in X, we say that the sequence {x»} has a limit or converges to x,
written lim x,= X or X, — X, if for every €> 0 there exists an integer N such that d (Xn, X) <
€whenever n > N . If {x,,} is a sequence in X and if {ny} is a sequence of positive integers

such that nj<ny<............ then the sequence {x;} is called a subse quence of {x}.

11.1.4: Definition: A metric space is said to be sequentially compact if every sequence in X
has a convergent subsequence.

11.1.5: Theorem: A metric space is sequentially compact if and only if it has the Bolzano
weierstrass property.

Proof: Let X be a metric space. Assume that X is sequentially compact. We show that every
infinite subset A of X has a limit point in X. Since A is infinite, we can choose a sequence
{x,} of distinct points from A. Since X is sequentially compact. the sequence {x,} has a

subsequence {x, k }+ which converges to a point X in X. Since {x, k } is a sequence of distinct

points, X is a limit point of the set {x, /k = 1}. Since the set {x,_ /k = 1}E A, it follows that
X is a limit point of A.

Conversely suppose that every infinite subset of X has a limit point in X. We prove
that X is sequentially compact. Let {x,,} be an arbitrary sequence in X. If the sequence {x,} has

a point x which is infinitelyy repeated, then there exists a subsequence {x;; } of {x,} such that
x,, = xfor all k=1. This subsequence {x,, }, converges to x if no point of {x,} is infinitely
repeated, the set A of points of the Sequence {x,} is infinite. Since 4 is infinite. It has a limit
point X. Then each open sphere centered on X contains infinitely many points of A.We choose a
subsequence {x; k} as follows. Choose nj such that d (x,x; k ) < 1. Having nj....nk.; such that

1 , .
n<m<....<nk and d(x, x,,)<- for i =1....k —1 choose an integer m, > n;_, and
L

d(x, x,,) < i forall k = 1. Clearly {x,, } converges to x. Thus X is sequentially compact.

Let us recall the following definition:

Let X be a metric space with metric d and let A€ X, The diameter d(A) of A is
defined by d(A) = sup{d(x,y) /X,yeA}, A is said to have finite diameter if d(A) is a real
number. In this case we Say that A is bounded, observe that 4 = ¢ if and only if d (A) = —¢=,
So,if A # ¢ then O =d (A) = @,

11.1.6: Definition: Let {G;} be an open cover of metric space X. A real number a >0 is called
a Lebesgue number for the open cover {G;} if each subset of X whose diameter is less than a
is contained in at least one Gj’s
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11.1.7:Theorem: (Lebesgue’s covering lemma). In sequentially compact metric space, every
open cover has a Lebesgue number.

Proof: Let X be a sequentially compact metric space and {G;} be an open cover of X. We say
that subset of X is ‘big’ if it is not contained in any G;. If there are no big sets, then any positive

real number will serve as a Lebesgue number. We may thus assume that big sets do exist. Note
that every big set contains at least two points. We define a' = gb (d(B)/B is a big set}. Clearly 0 <a'
<ooand a' <d(B), for any big set B. It will suffice to show that a' > 0; for if a'> 0 then any real

number a such that 0 < a < a! will be a Lebesgue number. We therefore assume that a' = 0 and
we deduce a contradiction from this assumption. For each positive integer n there exists a big

set Bn such that 0 <d (Bn) <i . Choose a point x, in each B,. Since X is sequentially compact,
the sequence {x,} has a subsequence {x;}, which converges to some point x in X. Then
X € G; for some set G; in our open cover {Gj}. Since &; , is open, there exists an open
sphere S«(x) such that S (x)< G, . Since x,, — x, it follows that x,, € 5, (x) for infinitely

many k, that is x,, € 5, -,(x) for infinitely many n.

Choose no such that x, €5,, and no > ?5 Thus 0 < d(B,, )< L <l . Ifye B,
then d{KJ }’) < fi{}ij xnu) + 'i(xn;{l Y}E-I_ d{Bnu) < E +E - L

Hence B, < 5.(x) €6,
This contradicts the fact that B, is a big set.

11.1.8: Definition:

(1) Let X be a metric space and € > 0.A subset A of X is called an € —net for X if A is
finite and X = U o4 Sc (@)

(11) A metric space X said to be totally bounced if it has an & net for each€ > O.
Let us recall that a subset A of X is said to be bounded if 0 =< d(A) < ga,where d(A) is the
diameter of A.

11.1.9: SAQ: Prove that a totally bounded metric space is bounded.
11.1.10: Theorem: Every sequentially compact metric space is totally bounded.

Proof: Let X be a sequentially compact metric space with metric d. Suppose that X is not
totally bounded. Then. for some €>0. X must have no €- net. Let x1€ X. Then the finite set
{x1} is not an &- net for X, and so there exists a point X € S¢ (x1): Therefore d(x,x) = €.

Now the finite set {X,X»} is also not an €-net, and so there exists a point

%3 € U=y 53(x). Thus d (x1, x3) = € and d (x1, x2)=€. Proceed by induction. If there
exist a set of points {xi,....,xn} such that d(x,,x,) =€ whenever i#r, then this finite set
is not an €-net and so there exists a point x,_,, &€ U™, 5_(x,); that is d(x,,x,) =€
whenever i#r. Now by induction, we have a sequence {x,,} of distinct points in X

such that d(x;,%,) =€ whenever i#r.

Since X is sequentially compact, the sequence {x} has a subsequence (x;; ). which
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converges to a point X€ X. But the open sphere Se/p(x) must contain Xuj for k > N, where
N is some positive integer; that is Se/p(x) contains x,, for infinitely many n. This

contradicts the fact that d(x;,%,) =€ whenever i#r. Hence X is totally bounded.

11.1.12: Theorem: Every sequentially compact metric space is compact.

Proof : Let X be a sequentially compact metric space. Let {G;} be an open cover of X. By
lebessgue’s covering lemma, the open cover {G;} has a Lebesgue number a. Put € = a/3.

theorem11.1.10,X has an e—net, say {ai,.....,an}. For each k = 1,2,.....n, we have that the
diameter d (5S¢ (ay) )= 2 €< a .Since a is a Lebesgue number of the open cover {G;}, each k,

there exists an open set G;, in {Gj} such that S _(ap)< G;,.
Thus X = Sg(a;)V....US5:(a,) € G, UG, U ...UG; and hence X=G; U....UG, .
Therefore X is compact.

11.1.13:Theorem: If X is a metric space then the following conditions are equivalent,
(1) X is compact (i1) X is sequentially compact
(ii1) X has the Bolzano - Weierstrass property

Proof : (i) = (iii) follows from the theorem11.1.2, (iii) = (ii) follows from the theorem
11.1.5 and (i1)) = (i) follows from the theorem 11.1.11.

11.1.14: SAQ: Show that a compact metric space is separable.

Proof: We now prove an important theorem regarding continuous functions of compact
metric spaces into arbitrary metric spaces.

11.1.15:Theorem: Any continuous mapping of a compact metric space into a metric space
is uniformly continuous.

Proof: Let f be a continuous mapping of a compact metric space X into a metric Space Y. Let
dx and dy be the metrics on X and Y respectively, Let € > 0. For each x €X, consider the open

sphere S¢/5 (f(x)) centered on f(x) and radius E in Y, Since f is continuous.f ™ (Sef: [f[x])) is
an open set in X containing x, Now, the class {f -1 (SE /2 [f(x))j } is an open cover of X.

we X
since X is compact, this open cover has a Lebesgue number 6 > 0. If x, x! € X are such that

dx (x, x!) < &, then the set {x, x'} is a set with diameter < &. Therefore {x, x'} € f1
{SE,-*: [f(xc,j)) for some ¥, € X. Hence f(x), f(x') €S_,,(f'(x,)). This implies that dx
(f(x).f(x")) <dy ((x).f(x0)) + dy (f(x0).f'(y))< E +§ =€ thus f'is uniformly continuous.

11.2: MODCL EXAMINATION QUESTIONS:

1. Prove that a metric space is sequentially compact iff it has the Bolzano Weierstrass

property.
2. Prove that every open cover of a sequentially compact metric space has a Lebesgue
number.
3. Prove that evry compact topological space has the Bolzano —Weierstrass property.
4. Prove that every sequentially compact metric space is totally bounded.

5. Prove that every sequentially compact metric space is compact.
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6. Prove that any continuous mapping of a compact of a compact metric, space is
uniformly continuous.

11.3: EXERCISE:

1. Prove thate very compact topological space has the Bolzano-Weierstrass property.
2. Let X be a metric space with metric d and let €> 0. Prove that if x € X, then the

set M. (x) = [},, Ex

3. Let X be the set of all positive integers. Let T be the topology on X generated by the
class of all sets of the form {2n—1, 2n} , where n € X. Show that with this topology T,
X has the Bolzano-Weierstrass property but it is not compact.

f'fn!{x,}rj }E{ is open in X.

4. Prove that if E, is a compact subset of a metric space, then its derived set d(E) is also

compact (d(E) is the set of all limit points of E in X).
5. Prove that a subspace A of a metric space X is totally bounded iff Ais totally
bounded.

11.4 SUMMARY:

We learrnt that the understand the Bolzano — Weierstrass property and its relation to
compactness. We proved that the equivalence of sequential compactness and compact
understand the relationship between completeness, totally boundedness and compactness.

11.5 TECHNICAL TERMS:

1. Metric space; A set equipped with a metric.

2. Compact space; A metric space where every open cover has a finite sub cover.

3. Lebesgue number; The largest number such that every subset of a metric space with
diameter less than this number is contained in some member of an open cover.

4. Open cover; A collection of open sets that cover a metric space.

11.6 ANSWER TO SELF ASSESSMENT QUESTIONS:

11.1.3:SAQ: Let Y be a compact subspace or a metric x and let d be the metric on X. To
prove that Y is closed, it suffices to show that its complement y' in X is open. Let Z € y1. For

each positive integer n, let A_ = {x € X/d(x,z) < i }
Then, {Axs} is an ascending sequence of open sets in X such that ¥ & U, 4.
Since Y is compact and {A,} is an ascending sequence, there exists a positive integer n such

that ¥ € 4, clearly y € 5, ,,,(z) € ¥ 'is open. Sphere with centre, z and radius iHence.Y1 is
open.
11.1.9:SAQ: d Let X be a totally bounded - metric space with metric d. Let €= 0. Since X is

totally bounded, X has an e- net, say {al, a2.....,an}.
Then X = UL, S (a;).

Ifx,y € Xthenx € Se (a)) any y € Se (ay) for some i, r. Therefore d(x,y)= d (x, a;) +d
(a;, ap,) +d (a, y) = d ({a.....a}) + 2Ewhere d ({aj.....a,}) is the diameter of
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{aq.....,ay}. This implies that d (X) =d ((aj......an}) + 2€ < 0.
Hence X is bounded.

11.1.13:SAQ: Let X be a compact metric space. By theorems 11.1.2 and 11.1.10 X is totally
bounded. For each positive integer n, let C, be an ﬁ—net of X. Put D = Up=1 &y Since each

C, is finite, it follows that D is countable.
To prove the result, it suffices to prove that D is dense in X. Let S,(x) be any open sphere

in X. Choose n such that, i < 1. Since Cy is an i - net for X, we get that X = Ugec S;(a).

Therefore x € 8,,,(a) for some a€C, SD. since i <r, it follows that
a €S,,,(x)E 5.(x)# ¢.Hence Dis dense in X.

11.7 SUGGESTED READINGS:

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book
Company, New York International student edition.

Dr. V. Amarendra Babu



LESSON -12
ASCOLI’'S THEOREM

OBJECTIVES:

The objectives of this lesson are to.
% To understand the concepts of a metric space.
+»+ To understand the concepts of continuity in a metric space.
% To understand the concepts of compactness in a metric space.

STRUCTURE:

12.0: Introduction

12.1: Ascoli’stheorem

12.2: Model examination questions

12.3: Exercise

12.4: Summary

12.5: Technical terms

12.6: Answer to self assessment questions
12.7: Suggested readings

12.0: INTRODUCTION:

In Lesson 11 we established that compactness of a metric space is equivalent to sequential
compactness as well as BolzanoWeierstrass property. The full power of these criteria becomes
evident when these are found to be instrument - tal to characterize cmpact subsets of the space
C(X,C) of complex valued continuous functions on a compactmetric space X.This
characterization is known as Ascoli’s theorem also called Arzela - Ascoli theorem and Ascoli —
Arzola theorem .

This theorem is based on “Cantor’s diagonalization process” which en- ables us to select
a sequence from an array. of sequences in such a way that except for a few terms in the
beginning depending on the array all the remaining terms lie in every array.

12.0.1:SAQ: With notation as above for every m = lthe sequence {ym,Ym+i....Ymtn,.-..}
where yx = X, k= 1is a subsequence of Sp. In particular {yi,y>.....yk} 1s a subsequence

T

of {x1,X2....Xn.....}.
In the sequel (X,d) stands for a compact metric space and C (X, ) for the Branch space of
all complex valued continuous functions on X.

12.0.2:Theorem A : A metric space X is compact if and only if X is complete and totally
bounded.

Proof: Assume that X is compact. Let{x,}.be any Cauchy sequence in X. Since X is

sequentially compact. {x, } contains a convergent subsequence say {Xnk} .

Let x = lim {x.}.We show that {x,} converges to x.
If € > 0 there exist positive integers No and Nxo, such that
If £ = 0 there exist positive integer Noand Ny, , such that
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d(Xn, Xm) < = for n > m = N, and d[x

we may choose N, = N,. We then have for n = N, .
& &

d(Xn, X) = (Xn, X”;{D) +d (x”kn,x) <;tz;=e

Hence lim x, = x.
Since every Cauchy sequence in X converges in X, X is complete.

£
x) < ;fDr m = Ny

1 F
ny

To prove that X is totally bounded -Iet £> 0 be any number.The collection {Se(x)/x € X}
is an open cover tor X. Since X is compact, there exist finitely many elements of X, say
X1...... Xn such that X = U, §_(x,). This is true for every ¢ > 0, so X is totally bounded.

Conversely suppose X is complete and totally bounded. Let {x,} be any sequence in X.
We show that {x,} has a convergent subsequence. Since X is complete it is enough to show
that {x,} has a subsequence which satisties Cauchy criterion.

Write xn = Xin and S; for {xin} since X is totally bounded the collection {5-: (x)/xEX } has a
4

finite subcollection which covers X. Denote this finite subcollection by V1,Vo, .......... Vn Since
the elements x;, belong to the union of Vj, 1= 1 = n ,one of these neighborhoods contains Xin
for infinitely many n.

Let S,:{X, 1,X) pereenn. X2feeennenns } be such a sequence which is included in a single Vi so that

d(x2i, X2j) <= foralliand j

Apply the above argument to the sequence Sz and the collection {5-: (x)/x € X} has a finite

subcollection which covers X.As above we get a subsequence of S».

Say S3= {X 31 .X32 «...X3n.nnnn } whose elements lie in one of the spheres so that
d(x3.i, X3j) < ??'!',j.
We repeat this process and get a sequence of sequences {Sy} where S)=

{XK1,XK2neenene Xkn.....J 18 a subsequence of its predecessor Sy_jand d(xk.i, xk.j) < i Wi, j.

The diagonal sequence S = {y1,y2,......... Yk |
Where yj= xj ¥ k satisfies the conditions SAQ 9.2.

Thus if r > s, d(xes, Xss) < =
Ife= Elandsﬁ‘fthenforr} s

1
d(}rr"}rs-) = " < £

Henee {y:} is a Cauchy sequence and as each yr = X;r 1is an element of {xan}, {y,} is a
Subsequence of {x}.This completes the proof.

Since a closed subspace of a complete metric space is complete we have the following
theorem as an immediate consequence of theorem A.

12.0.3:Theorem B: A closed subspace of a complete metric space is compact if and only
if it is totally bounded.

12.0.4:Definition: A subset F of C(X,@) is said to be equieontinuous if for eyery positive
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number £ there corresponds &(s) = 0 depending on = such that for every x, y in X with d
(x,y) < @(e) and f € F such that |[f(x) — f(y)] < &:

12.0.5: Remark: Since every f€C(X, ©C) is uniformly continuous given €= 0 and
f€C(X, C) there exists § = 0 depending on gas well as f such that x € X, Y €X and

d(xy) < & = [f(x) - f(y)| < =

The property that makes a family of functions F in C(X, ) equicontinous, is the existence
of a common &(=) = 0 depending on = alone, such that d(xy) < &(g) = |f(x) — f(y)| < ¢
forall fin F.

12.0.6:SAQ: Every finite set F € C(X, C) is equicontinuous.

12.0.7:SAQ: If (X.d) is any metric space, not necessarily compact, A = X and if for every
d > 0 there exist finitely many points x,, x_in X such that 4 S UZ, 55(x;) then there exist

finitely many points aj........... anin A such tlun 4 € U™, S;(a;)
12.0.8:ProPosition: A totally bounded subset F < C(X, C) is equicoruinuous.

Proof: Since F; is totally founded, given €> 0 there exist finitely many elements floceeens f
depending upon = such that F, © U2, S=(5;)

Since X is compact and each fi is continuous on X. corresponding to £ and fi there exists
J, = O such that |f, (x) — £ (v)| < g for x, y in X satisfying d(x,y) <&,

Let § = min {J, .....4d,}

If f €F, forsomei, f € SE(f-lj so that ¥x € X|f(z) — f.(2)| {g

Ifd(x,y)<dand x € X, v € X ,then d(x, y) < & for some i so that |f.(x) — f.(y)| < g
Hence [f(x) — f(y)| = [f(x) — fj(x) + f(x) — fj(y) + fi(y) — (y)|

E_I_E_I_E_
< |f) - i) Ll - | L 6 - )| < s+ +7=¢
The proof complete.

12.0.9: SAQ: If F c €(X, K is totally bounded then F is bounded.

12.0.10:SAQ: Let (X. d) be a compact metric space, If f, € C(X,C) ¥ n and {f } converges

uniformly on X then {f;,} is equicontinuous on X.

12.1: ASCOLI'STHEOREM:

12.1.1:Theorcm (Ascoli): Suppose F is a closed subset of C(X, €).Then F is compact if and
only if F is bounded and equiconrinuous.

Proof: Suppose F is compact totally bounded hence by 12.0.9 equiconrinuous. Moreover a
totally bounded set is bounded. Thus compactness of Fimplies that F is bounded and
equicontinuous.

Conversely suppose that F is bounded and equicontinuous. To prove that F is a
compact subset of the metric space €(X,C), it is enough to show that F is sequcntially
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compact in C(X, ). As we have assumed that F is a closed subset of C(X, C). Complete as a
metric space so that every Cauchy sequence in F is convergent. Thus it is enough to show
that every sequence in F contains a sub sequence when satisfies Cauchy’s criterion for
convergence in C(X, C).

Since X is a compact metric space, X is separable. Hence there is a countable set which is
dense in X. Let D = {x7......xn...... } be any such countable denseset in X.

Since F is bounded, there exists a real number K > 0 such that [f(x)| = K for all fin F and x €
K......... (1). Since F is equicontinuous, given & = Q there is §(&) = 0 such that for all x, y in X
and fin F. d(x,y) < () = If(x) —f(v)| < g. ................ )

We claim that the open spheres {Ss(x,)/n = 1} where § = §(£) cover X. Since D is
dense in X for any x eX the open sphere 5z (x) contains X, for some m, so that

X Um J.S [:xm)

Since X is compact this open cover has a finite subcover, So there are integers
mi,m......... mn. Such that X= U7 — 151[3{;,”{_)

[Text book Print Problem]

By Heine - Borel theorem this sequence of numbers contains a convergent subsequence,
Choose any such convergent subsequence say {f, (x)),f ,(X,).....f;(x, )}

Write S, = {f, £ ,.f, 5oneeen. finoi, }
Si is a subsequence of So such that S, (x,)={f, ,(x)).f; ,(x,)} converges,

We define inductively a sequence of sequences Sy = { fu+1, fnt2,eeoeeeeeeifrtheee veeeeven. }
Such that for eachn, S is a subsequence of S|, and S (X)) ={f,-11(x,)s 2.2 (%,)seevevee. S

¢ (x,).......} converges; We have already defined such sequence when n = 1. Assuming that

S-1» is already defined.

Then S (x) = {fucy, (x,), frua (3,)s oo fimy, () ...} i1s bounded. Hence contains a
convergent subsequence. We choose any such convergent subse quence and denote this by

Va1 Gen) faz (%) e oo i ()

we now write Sp = {f-1- fa—zs oo oo Frpmge o2}

S,, is a subsequence of S| 1 and S, (x,)) is a convergent sequence. The inductive process is
complete. We now apply SAQ12.0.1 to the countable collection {So,Si,...... Sh.e..n. }

The sequence S = { f1.1, f2.2,....fun.....} 1s @ subsequence or {fi, f>......... fryenene. }

Also forall k = 1, {fi .fus1, - Fisp,, ) is asubsequence of {f; .fy. . fkp““}

Since the sequence Sk (xk) converges and {f,, (%), fie . (). fro (0] . [xk]} is a

subsequence of Sk (xx) this subsequence converges.

Hence S(xi) = {fy, (x,). fz, (x.). fz_ (x3.) ... fi, (35 )] converges for every k.

Write g,= fno-Then {g,,8,--8 -} 18 @ subsequence of {f.f,, f,....f........ } and the
sequence {g .(x,)} converges for every k. We show that the sequence {g } is a Cauchy

sequence in F using (2) and (3).

Since {g,(x)} converges for 1 =i =S (s as in (3)) for each i, 1 =i <s 3 a positive integer N; such
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that [g, (x;) — g(xp)| <z forn 2m =Ny .. ()

Let N (&) =max (Np.............. Ns)and x € X.

By(3)3aisl <i<s and ¥ € 5;(x;)

Forn Zm =N(€),n Zm £ N; so

|2,(x) — 2, = 18,(X) — g,(x)) — 8,(X}) — 8, (X)) * g,(Xp) — &, (X)|
= |gn(X) — gn (&)l = 18m (X)) — gn(XDI + [gm(X}) — gy
< 5 +§ +§ < £ by (4) and (2)

Since this is true for every x € X, we get forn>m > ( g)
d (gn, gm) = SIprEﬂlgu(x] - gm (I] | i §+ i—l_ % ~ £
Hence {g_} is a Cauchy sequence.

The proof is complete .
12.1.2:Corollary:

Let K be either Ror ©, X be a compact metric space and F be a closed subset of C(X.K).
Then F is compact if it is equicontinuous and F,={f(x) / f € F } is bounded for every x € X.

Proof: In view of Ascoli’s theorem it is enough to show that F is bounded in C(X.K) that is
there exists a K > 0 such that [f(x)] = K for x € X and f € F. Since F is equicontinuous,
there exists & > 0 such that [f(x) — f(y)| < 1for all fin F and x, y in X with d (x, y) < d. The
collection of open spheres {5; (x) /x€ X } is an open cover for X. So there is a finite
number of elements, say, X ........ X, in Xsuchthatx = UZ, S5(x;)

Since F, is bounded for every i, 1 =i = m, there is a M > 0 such that. |f (xj)| < M for
every fEFand 1 =i =m. If x € X there is i such that d (x. Xj) < &. This implies that [f(x)

—f(x)| <1 forevery f EF
Hence |f(x)| = |f (xj)[+[f(x) — f(xj )] < M+1 ¥ f € F. Since this is true for every f € F and

x € X it follows that F is bounded.

12.2: MODEL EXAMINATION QUESTION :

1. Define equicontinuity of a family of functions F in C(X, €).when X is a compact
metric space. Show that if F C C(X, C)is totally bounded in C(X,C).then F is
equicontinuous.

2. Let (X, d) be a compact metric space and F  C(X, ). If F is compact then F is
equicontinuous.

3. Let D be a countable set and {f,} be a sequence of complex valued functions such

that {f,,(x)} is bounded for every x € D. Show that there is a subsequence {gx} of
{fn} such that {gk (x)} converges for every x € D.

12.3: EXERCISE :

1. Show that (0,1) is bounded but not totally bounded.
2. Let: f: R > R be uniformly continuous. Define f,,(x) = f(nx) for n >1. Is {f;;} an

equicontinuous family?
3. Suppose {f,} is an equicontinuous on a compact metric space (X.d) and {f,(x)}
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converges for every x € X. Show that {f} converges ill C(X, ©C)

4. Let f,(x) :M_—_M}, (0=x=1land1l)

(a) Show thatlim_ f (x) =0(0< x < 1)

(b) Show that [f(x)| <10 <x <1
(¢) Show that f,(x) is not equicontinuous,

(d) Does equicontinuous imply boundedness?
12.4 SUMMARY:

We learrnt that the metric space and continuity in a metric space. We have proved that A
closed subspace of a complete metric space is compact if and only if it is totally bounded.

12.5 TECHINICAL TERMS :

Compact set —Totoal boundedness — conitnuity:

The proof of Ascoli’s theorem requires consideration of a countable collection of sequences
which, when arranged in a sequence. each one is a subsequence of its predecessor.We recall
that a sequence {bn} is a subsequence of a sequence {a,} if there is a strictly increasing
map:@:N = M such that by=a,  foreveryn =1.

This definition is equivalent to the existence of a strictly increasing sequence of positive
integers (nx) such that for every k = 1. bx = ax

Notation: Suppose : X is set and {X1,X2.....Xn.....} 18 a sequence in X. We write
So={xX1,X2.. .. Xn. ... .

Suppose we are given a countable collection of sequences {So,S1,S»...... Sh....} such that each Sk
is a subsequence of its predecessor Sk.1. We write Sk=St = {Xi+1,Xk+2,...... XKt nveene }.

12.6 ANSWER TO SELF ASSESSMENT QUESTIONS :

SAQ:12.0.1: Let ¢, :N— I1be the strictly increasing map that makes

Sk+1:{Xps110 Xpaa0 e vees Xty - -} subsequence of Sg = {Xa 0 X o voe voes Xae py ooe o }

Then x,, = x4y 40, foreveryk =l and n =lwhere x, =x,.

Wedefine @y :@ps) @rig o oo Prip

Then ¢, F=N N is strictly increasing and Xpsp = Xpap—y grm) ¥ = 1

Thus {x}.p,} is asubsequence of {x, } forallp € M. Alsoifk +p=r.

{Vr, Vretlyeennnn Vitlgeeeennenn y is a subsequence Of {X ., Xy X pipot- Which s a
subsequence of Sy,.

In particular{xl’l,xz’z, ..... Xp,preeeeeeeeeees } 1s a subsequence of Sy = { Xq, Xp>.. Xn...... }

12.0.6:SAQ: Suppose € = 0. There are §j( &) = 0 such that
fix) — fi(y)| < & if d (x.y) < /(e
Set §(2) = Min {6,(£).8,(2)}
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12.0.7:SAQ: Suppose & = 0.Then there are Xi,....Xm in X such that
A S Sgpa(xy)U e U S5pa(x,)

Suppose @ € AN S5;,,(x;) thena € AANS;,,(x;) € 55(c) choose one element from
each non-empty set 4 N 55,5(x;)

Letag,az.......... a, be the points so selected that A & Sz ,,(ay) U......... USs(a,).

12.0.9.SAQ:1 > 0, So there are f,....... f_in F such that F & 5, (f)u..u s ()
LetK = lIf Il +....... +If,,|I. If £ € F then there is j such that f € 8, (f) so
lfll = || f— £+ £ < ||f - £ +||f|| =K +1

12.0.10: SAQ: Let £ = 0. Since {f;,;} converges uniformly on X. there is a positive integer N
such that ||[fn — finll = SUPep |fu (%) — fin(x)] :‘:S for n>m =N,

In particular ||f, — £, Il < gfor n=N.

Each of the functions f;,  f; is continuous, hence uniform Jy continuous on X.

Hence there is & = 0 sud, that [fi(x) —fi(y)| < g ifdx,y)<dand 1<i=<NIfn=Nandd
(xy)<d

If_ (%) — £_(v)] < |f (%) — iy (x)| + |Ey(x) — f ()] + I (3) — fn(y)lﬂi§+§+§= £

12.7 SUGGESTED READINGS:

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book
Company, New York International student edition.

Dr. V. Amarendra Babu



LESSON -13
SEPARATION

OBJECTIVES:

The objectives of this lesson are to.
¢+ To understand the concepts of a Hausdorff space.
% To understand the concepts of separation axioms.

STRUCTURE:

13.0: Introduction

13.1: Hausdorff space

13.2: Model examination questions

13.3: Exercise

13.4: Summary

13.5: Technical terms

13.6: Answer to self assessment questions
13.7: Suggested readings

13.0: INTRODUCTION :

In this lesson we introduce three separation axioms and explain some of their
properties. These axioms are called separation axioms for the reason that they involve
separating certain kinds of sets from one another by disjoint open sets.

Consider thae fact that in 9§ and R 2 each one point set is closed. But this is not true in

arbitrary topological spaces. For example, consider the topologyl= {0, x,{a,b},{b,c},{b}} on
the three point set X={a,b,c}. In this space the one point {b} is not closed , for its complement
is not open therefore, one often opposes an additional condition that will rule out examples
like this one, bringing the class of spaces under consideration closer to those to which one’s
geometric intuition applies. The condition was suggested by the mathematician Felix
Hausdroff. So mathematicians have come to call it by his name.

The Hausdorff condition is stronger than the following property, which is usually
called the T-axiom.

13.1: HAUSDORFF SPACE:

13.1.1: Definition: AT{-space is a topological space in which given any pair of distinct points,
each has a neighborhood which contain the other.

13.1.2 Examples:

(1) Every discrete space with more than one point is a T|-space.
(11)  Every indiscrete space with more than one point is not a T-space

(iii)  Consider the space X = {1,2,3}, T{¢ ,x,{1},{1,2},{1,3}} every open set that
contains 2 also contains 1.Hence X is not a T{-space.
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(iv) Let X be any infinite set, and let the topology consist of the empty set ¢
together with all subsets of X whose complements are finite
(that is co-finite topology) This is a T{-space.

13.1.3 Self assessment Questions:

Show that any subspace of a T - space is a also a T - space. In the following theorem we will
give a simple characterization of a T - space.

13.1.4 Theorem: A Topological space X is a Ti-space if, and only if every sub-set consisting
of exactly one point is closed.

Proof: If x and y are district points of X in which every subset consisting of exactly one point
is closed, then {x}! is a open set containing y but not x. While{y}! is an open set containing x
but not y. Thus X is a T - space.

Conversely, let us suppose that X is a T{- space and that x is a point of x.

Then by definition 11.1.1 if y # x there exists an open set Gy containing y but not X, that is
yeGyg {X}I'

But then {x}' = U{{y}: y#x } c {x}!, and so {x}' is an union of open sets, andhence is itself
open. Thus {x} is a closed set for every xeX.

13.1.5: Self Assessment Questions:

Show that in a T{ - space X, a point x is a limit point of a set E if and only if every open set

containing x contains an infinite number of distinct points of E.

13.1.6: Self Assessment Questions:

Show that any finite T -space is discrete.

13.1.7: Self Assessment Questions:

Show that a topological space is a Tq-space iff each point of X is intersection ofall open sets

containing it. We now define a separation property which is slightlystronger than the T - axiom.

13.1.8: Definition: A T, - space or Hausdorff space is topological space X in which each pair

of distinct points can be separated by open sets, in the sense tha they have disjoint
neighborhoods. That is xeX, yeX and x # y, there exists

neighborhoods UX,Uy, of X respectively such that Ux N"Uy = ¢ .

13.1.9: Examples:

(1) Every discrete space X is a T2-space for, if X, yex are such that x # y {x} and {y} are
open sets, {x} N{y} = ¢ and xe {x}, ye{y}.

(1)  Every metric space is a Hausdorff space.
(i)  Every Subspace of a Hausdroff space is a Hausdroff space.
(iv)  Every Hausdroff space is a T{-space but converse is not true. For example ,if T is the
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co-infinite topology on an infinite set X then (X,T) is a T- space butnot a Hausdroff space
(T - space)

By the definition of T, Since any finite subset of X is closed, singletons areclosed. Hence,
(X,T)isaT; - space.

We will show that in this space we cannot find two disjoint open sets neitherof which is

empty. For otherwise, suppose G and H are disjoint non-empty open sets then, X = (1)1 =
(GNH)' =G!'UH!, a contradiction, Since G' and H' are finite so is their union G'UH' = X.

Therefore (X,T) is not a Hausdroff space.

13.1.10 Theorem: The product of any non empty class of Hausdroff space is a Hausdroff
space.

Proof: Let X = []. X, be the product of nonempty class of Hausdroff spaces. Let x and y be the
two distinct points in X. Then we must have x; # y; for at least one index io. Since x;_is
Hausdroff, there exists disjoint open sets U; and V; containing x; and y; respectively.

Now (l'[;j1 U, ) and H;l (V) disjoint open sets in the product space containing x and y
respectively.

13.1.11: Theorem: In a Hausdorff space any point and disjoint compact subspacecan be separated
by open sets in the sense that they have disjoint neighborhoods.

Proof: Let X be a Hausdorff space, x a point in X and C a compact subspace of X which does
not contain x. We exhibit a disjoint pair of open sets G and H suchthat xe G and Cc H. Let y be a

point in C. Since y # x and X is a Hausdorff space. There exists disjoint neighborhoods Gy and

Hy of x and y respectively. If we allow y to vary over C, we obtain a class {f/y}ycc of open

sets such that C c U, .. H,, .Since C is compact, there is a finite subclass

{HF-_’HY:’ .I—Iyn}such that. Cc HF__ u Hy: U...uU Hyn.

If Gy;,Gyp, ......... ,Gyp, are the neighborhoods of X which correspond toH,, ’s put G =

i=1 Gy;and H= U=, H . Clearly G and H are open sets containing x and C respectively.
Foreachi=1.2,..nGNH,c G, NH.=¢.
Therefore G NH=U{=,(G n H, ) = ¢. Hence, G and H are disjoint. We have provedin

theorem 9.1.3 that every closed subspace of a compact space is compact. By considering the
indiscrete space X, we have proved that a compact subspace of a compact space X need not be
closed. We now use the preceding theorem toshow that compact subspaces of Hausdorff
spaces are always closed.

13.1.12: Corollary: Every compact subspace of a Hausdorff space is closed.

Proof: Let C be a compact subspace of a Hausdorff space X. We prove that C isclosed by
showing that its complement C' is open. C! is open if it is empty. Sowe may assume mat C' is
non-empty. Let x be any point in C!. By theorem to 13.1.1, x has a neighborhood Gy
such that xe GS C!. Clearly, C'= U_..: G_; therefore C! is open. One of the most useful
consequences of this result is the following:
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13.1.13: Theorem: A one—to—one continuous mapping of a compact space onto a Hausdorff
space is a homeomorphism.

Proof: Let f: X— Y be a one-to-one continuous mapping of a compact space X onto a
Hausdorff space Y. We must show that f(G) is open in Y whenever G isopen in X. If G is open
in X then G! is closed in X. Since X is compact, G' is compact. Therefore f(G') is compact
since f'is continuous. Since f'is onto f(G)' = f(G)' is a compact subspace of a Hausdorff space
Y. Hence. By Corollary 13.1.12. f(G)! is closed. Therefore, f(G) is open.

13.1.14: Self Assessment Questions:

(a) Givean example of a topological space in which any sequence converges toevery point of
the space.

(b) If X is a Hausdorff space, show that every convergent sequence in X has aunique limit.

13.1.15: Definition: Let X be a topological space: and consider the set C(X, % )of all bounded

continuous real functions defined on X. If for each pair of distinct points x and y in X there exists’
a function f'in C(X, % ) such that f(x) « f(y), wesay that C(X, E) separates points.

13.1.16: Lemma: If C(X, ) separates points then X is Hausdorff space

Proof: Let x.yeX such that x # y. Since C(X, R ) separates points there exists afunction fin C(X,
) such that f(x)# f(y). Suppose f(x)<(y). Let r be a real number such that

f(x)<r<f(y}. Now put Gy=f ~!(—o0,r), Gy= f~!(r,) Since f is continuous, G, and G,are

open in X and x€G,, and yeG,, Gy NG, =¢Hence, X is Hausdorff space.

13.1.17:Definition: A topological space X is said to be a completely regularspace if (i) X is
a Ti-space (i) xeX, F is a closed subspace of X such that x¢F then there exists a function fin C(X,

R)suchthat 0<f (x)<I1Vxe X and f(x)=0 and f(F)=I. Thus completely regular spaces are T -

spaces in which continuousfunctions separate points from disjoint closed subspaces.
13.1.18: Lemma: Every completely regular space is a Hausdorff space.

Proof: Let X be a completely regular space, Then X is a T| — space by definition. we will show
that C(X, R) separates points. Let x,yeX such that x # y. Since Xis a T;-space singletons are

closed. Thus {y} is closed and x¢ {y}. Then there exists an f in C(X, R) with values in [0,1]
such that f(x)=0 and f(y)=1. Hence for any x,y in X such that x # y there exists in C(X, R ) such
that f(x) # f(y). By Lemma 13.1.17. X is a Haussdorff space.

13.1.19: Remark: Any subspace of a completely regular space is completely regular. Our
next separation property is similar to that of a Housdorff space, except that it applies to
disjoint closed sets instead of merely distinct points.

13.1.20: Definition: A T;-space X is said to be normal space if for any two disjoint closed
sets F| and F5 in X there exist disjointopensets Gy and Gpy such thatFj < Gpy ,and
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Note: Any metric space is a normal space (see 13.4(5))

13.1.21: Theorem: Every compact Hausdorff space is normal.

Proof: Let X be a compact Hausdorff space and F and F, be disjoint closed subsets of X.
We must produce a disjoint pair of open sets Gg and Gy, such thatand F| < Gpy ,andFy

GF2 . If either of the closed sets is empty. We can take the empty set as a neighbourhood of Fy
and the full space as a neighborhood ofthe other. We may therefore assume that both F; and

F5 are disjoint compact subspaces of X. Let x be a point of F; then xgF> hence by theorem

13.1.11, there exist disjoint open sets Gz and Gz , such that xeG and F) < GF2 . The

collection {Gy/xeF} covers Fq, and since Fy, is compact there exist x,X2............ in Fy, such
that i < UL, G,

Now, put clearly Gz = U=, G, is an open set containing F;, PutGz_ = Uj-, G,

Gy, NG, € Gg x = ¢. Hence Gg MGg=¢ fori= 1,2, -1 Therefore

Gg N GF::(U?:l Gxi) N Gg = ;z=1(Gx-l n Gr-l) = ¢.

Hence G and Gg, are disjoint open sets such F1 ¢ Gg F, CGg .
Since F c G fori=1,2,......... n.
Therefore X is a normal space.

A characterization of normality is given in the following theorem. Let us recallthat by a
neighborhood of a set F we mean an open set G containing F.

13.1.22 Theorem: A topological space X is normal if and only if each neighborhood
of a closed set F contains the closure of some neighborhood of F.

Proof: Suppose X isnormaland the closed set F is contained in an open set G.Put, K=X-G.
Now K is a closed set which is disjoint from F. Since X is normalthere exist disjoint open sets
Gf and Gk such that F€ Gg and K< Gy.. Since G < X'\ G and X~ Gis closed, we have

EFF QX—GK.
Now, G; < X —Gk C X — K =G. Thus G is a desired set.

Here G is a neighborhood of F and its closure G. < G Conversely suppose the condition
holds and let F| be contained in the open set X - F5, and by hypothesis there exists an open set
G'such that F, © G'and G* € X — F,. Clearly G* and X - G* form a pair of desjoint open
sets containing F and Fy respectively.

We now prove the main theorem of the lesson that is commonly called the ‘Urysohn’s
Lemma’. It asserts the existence of certain real-valued continuous functions on a normal space
X.

13.1.23: Theorem (Urysohn’s Lemma) : Let X be a normal space and let A andB be disjoint
closed subspaces of X. Then there exists a continuous real funnctionf defined on X, all of whose
values lie in the closed unit interval [0,1] such thatf(A) =0 and f(B) =1.

Proof: We shall define, for each rational number r, an open set U, of X in such away that

whenever r<s we have U, € U_. For each rational number r such that r << 0. define U, = ¢ for
each = 1. define U. = X. Let {r,} be a listing of all rational numbers in the interval [0, 1] such
that =0 and r=1. Define U, = B*. Since A is a closed set contained in the open set U, by
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theorem 13.1.22. there is an open set U, r, such that A€ U, . and U, < U, suppose that
U o Upsn , U, . are defined. We define U, as follows: The number ri is the smallest
element. and 1, is the largest element of the set {ri, r2,.....1n+1} and ra+1 is neither 11 nor 2 So, 15,41

has an immediate predecessor p and an immediate successor q in{ry,r,..... Tn+1)

Since p <1, 41<q, sets Up and Uq are already defined and Ei,_, € U, . Since X is normal, there is

an open set U, 41 of X Such that Ep cu, andErﬂJrI S U,. By induction, we have
U, defined for all n, we now define f :X >R as follows: Given a point x of X, let us define
Q(Ix) ={r/xeU}, 1<0 = x¢ ¢= U, s0, reQ(x) = xc. Also Q(x) it contains every number greater
thanl, since every x is in U, for r > 1. Therefore Q(x) is bounded below, and its greater lower

bound is a point in the internal [0,1].
Define f(x) = glb, Q(x) = glb {r/’xeU,}.

We show that f is the desired function. If xeA, then xeU, for every r > 0,s0 that Q(x)

equals the set of all.non-negative rationals and f(x) =g.l.b Q(x)=0. similarly, if xeB, then
xeU; for no r <1, so that Q(x) consists of all rational numbers greater than 1, and f(x) =1

We finally we show that f is continuous.
For this purpose, we first prove the following elementary facts.
(1) xeU, =f(x)<r
(1) =xeU. =fx) =r
To prove (i), note that if xe U, then ngUg for every s > r Q(x) contains allrational

numbers greater than r, so that by definition we have f(x) -glb Q(x) <.

To prove (ii), note that if xgU, then xgUg for any s<r. Therefore Q(x)contains no
rational number less than or equal to r.f(x) = glb Q(x)>r.
Now we Prove continuity of f. Let x,eX. Let (c,d) be an open intervalcontaining the
point f(x,). Choose rational numbers p and q such that ¢ <p <f(x,) <q <d. Put
U=U, N (Y}, Clearly xeU (for it xo2Uq then by (ii) flx,)>q. Also x, ¢ U, , because x
Eu,:> f(xg)<p, by(1)). U is a nbd of x,. We show that f{U)c (c,d).

Let x€U then erq c Eq so that, f(x) < q by (i) And x, € T, po so that x & U, and f(x) = p

by (ii) Thus f(x)€ [p.g] € (c.d), as desired.
The following slightly more flexible form of Urysohn’s lemma will be usefulin applications.

o€

13.1.24:Theorem :Let X be normal space, and let A and B be disjoint closed subspaces of X.
If [a,b] is any closed interval on the real line, then there exists acontinuous real function f
defined on X, all of whose values lie in [a,b], Such that f(A) =a and f(B) =b

Proof: If a = b, we have only to define f'by f(x) = a for-every x, so we may assumethat a <b. If g
is a function with the properties stated in Urysohn’s lemma, thenthe function f defined by f(x)
= (b—a) g(x)+a has the required properties.

13.2: MODEL EXAMINATION QUESTION:

1) Show thatatopological spaceis a T;-speceifand only if each pointis a ,closed set,

2) Show that a one-to-one continuous mapping of a compact space onto aHausdorff
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space is a homeomorphism.

3)  Define a ‘Hausdorffspace. Show that every compact subspace of a Hausdorffspace is
closed.

4)  Define a completely regular space and a normal space. Prove that everycompact
Hausdorff space is normal.
5) State and prove Urysohn’s lemma:

13.3: EXERCISE :

1)  Show that in a T;-space, no finite set has a limit point.

2)  Show that the co-finite topology defined on an infinite set is a Tj-space but not a

Hausdorff space..

3) If fis a continuous mapping of a topological space X into a Hausdorff space Y, prove
that the graph of f={(x,f(x)/xeX} is a closed subset of the productspace XxY.

4)  Show that any metric space is a Hausdorff space .

5)  Show that any metric space is a normal space.

6)  Show that a closed subspace of a normal space is normal.

7)  Let X'be a. T-space, and show that X is normal iff each neighborhood of aclosed set F

contains the closure of some neighborhood of F.
8) Isevery normal space a Hausdorff space?
9)  1sanormal space completely regular?
10) Is completely regular space normal?

13.4 SUMMARY:

We learrnt that the Hausdorff space and topological space. We have to prove that the product
of any non empty class of Hausdroff space is a Hausdroff space.

13.5 TECHNICAL TERMS:

1. T1 space: A topological space where for any two distinct points, there exist open sets
containing each point but not the other.

2. T2 space (Hausdorff space): A topological space where for any two distinct points,
there exist disjoint open sets containing each point.

13.6 ANSWER TO SELF ASSESSMENT QUESTIONS:

13.1.3: Let Y be a subspace of Tj-space X: Let yq # y, be distinct elements in Y. Since X is a
T{— space there exists a neighborhood G of y; and a neighborhood H of y2 such that ¥z €6

and ¥1 & H. Then, GNY and HN'Y are neighborhoods of y; , and y2 in Y. such that y; ¢ GNY
andy ¢ H NY. Hence, Y is a T — space.

13.1.4: Sufficiency of the condition is obvious. To prove the necessity, supposethere were an
open set G containing ¢ for which GNE was finite.
If we set G M (E/{x}) = UZ,{x;] then each set {xi} would also be a closed set.

But then (U™ {x.))* n G would be an open set containing x with

(UL n 6] n EN{x) = (UE {x. D' n (UZ,{x)) = ¢
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Thus x would not be a limit point of E.

13.1.16:SAQ: Since X is a T1-space, singletons are closed, Let A be a subset of

X then 4 = U_-4{a} is a finite union of closed sets and hence closed. Thus any subset of X is
closed and thus any subset of X is open. That is (X, ) is a discretespace.

13.1.7:SAQ :Let N be the intersection of all open sets containing on arbitrary point x and let y
be any point of X different from x. Since the space is T, thereexists a neighborhood of x not

containing y and consequently y cannot belong to N, that is ygN. Since y is arbitrary, no point
of X other then x can belong to N. It follows that N={x}. Now we prove the converse part let
x.y be any two distinct points of X. By hypothesis, the intersection of all neighborhoods of x is
{x}, Hence there must be a neighborhood of x which does not contain y. It follows that X is a
T;-space,

13.1.14:SAQ: We first recall the definition of the convergence of a sequence ina topological
spcace. Let X be an arbitrary topological space and {x, } a sequenceof points in X. This sequence

is said to be convergent if there exists a point x inX such that for each neighborhood G of x a
positive integer nyy can be found withthe property that x;, is in G for all n > n,. The point x

is called a limit of the sequence, and we say that {x,} converges to x (and symbolize this by

Xy —>X).

a) Example : Consider the indiscrete topological space X consisting of at leasttwo points. This
space is not a .Hausdorff space but in this space any sequenceconverges to every point of
the space.

Note: This is the reason why the above point x is called a,limit instead of the limit. It is the
failure of limits of sequences to be unique that makes this concept unsatisfactory in general
topological spaces. The following result shows that this anomalous behavior cannot occur in a
Hausdorff” space.

b) InaHausdorff space, a convergent sequence has a unique limit :- Suppose asequence {xn}
converges to two distinct points x and x * in a Hausdorff space X.Then there exist two
disjoint open sets G and G * such that xeG and x e G* . Since xa— X, there exists a positive
integer N ‘such that x,€G whenever n > N. Since x,— x °, there exists an integer N such
that x,eG* whenever n>N. If m is any integer greater than both N and N*, then xm

must be in both G and G’, which contradicts the fact that G and G* are disjoint.
13.7 SUGGESTED READINGS:

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book
Company, New York International student edition.

Prof. B . Satyanarayana



LESSON-14
TIETZE EXTENSION THEOREM

OBJECTIVES:

The objectives of this lesson are to.
% To understand the concept of normal spaces.
«» To prove the Tietze Extension Theorem

STRUCTURE:

14.0: Introduction

14.1: The tietze extension theorem

14.2: Model examination questions

14.3: Exercise

14.4: Summary

14.5: Technical terms

14.6: Answer to self assessment questions
14.7: Suggested readings

14.0 INTRODUCTION :

The Tietze Extension Theorem is a fundamental result in topology, named after the German
mathematician Heinrich Tietze. This theorem is a powerful tool for constructing continuous
functions on topological spaces. In topology, a continuous function is a function between
topological spaces that preserves the topological properties, such as openness and closedness.
However, it is not always easy to construct continuous functions on a given topological
space. The Tietze Extension Theorem provides a solution to this problem by allowing us to
extend a continuous function defined on a subspace to the entire space.

Consider the metric space X = [0,1] and the subset F = (0,1). Since .X is a metric space, it
is normal, meaning that any two disjoint closed sets can be separated by disjoint open sets.

Define a function f: F = [-1,1] by f(x) = sin(1/x). This function is continuous on F,

but it cannot be extended to a continuous function f #: X — [-1,1].

The reason is that the limit of f(x) as x approaches 0 does not exist. In fact, the function
F(x) oscillates between —1 and 1 as x approaches 0.

This example illustrates that even though F is a subspace of a normal space X, a continuous
function on F may not be extendable to a continuous function on X.

This highlights the importance of the Tietze Extension Theorem, which provides conditions
under which a continuous function on a subspace can be extended to a continuous function on
the entire space.

14.1: THE TIETZE EXTENSION THEOREM :

14.1.1: Tietze extension theorem : Let X be a normal space, Y aclosed subspace of X and fa
continuous real function defined on Y whose values liein a closed interval [a,b]. Then f has a
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continuous extension f' defined on all of X whose values also line in [a, b].

Proof: If a=b then f (x)=a Vx €Y and we define in this case f'(x) =a Vx € X
Assume that a <b. Since f'is bounded. the set {f(x)/x €Y} hasl.u.b. M and g.1.b.m.

Since a < f (x)<bfor every xeY we have ¢ <m< M<}p. we may therefore assume that [a,b]

itself is the smallest closed interval such thata < f (x)<b forallxeY. Since[a,b]is
homeomorphic to [-1, 1] we may further assume thata ==l andb =1

Thus f'is a continuous function from into [-1,1] and g.l.b {f (x) / x€Y) =—1land Lu.b
{f{x)/xeY}=1

Now let 4, = f~* [— :L,ﬂ and B, = f~* E, ;L]. Then A1, B1 are closed subsets of Y and
hence of X. Since —1= g.1.b {f(x)/xe Y}, there exists a sequence {a,} in Y such that
lim,, f(a,) = —1 similarly there is a sequence {bn} in Y such that lim, f(b,) = 1

The implies that A1,B1 are non-empty. Since X is normal by Urysohn’s lemma there is a
continuous function. Gi: X— [-1,+1] such that

(@) g(Ap)=-1

(b) g1(By) =+1
Define f; = f—ggl

Then function f1 is a continuous function f;, = ¥ — [—%,%]

To see this first we select x € 4,.

The we have f,(x) = f(x) — 5 g,(x) = f(x) — (—3) = () + ;

and — 1< f(x) = —%

there fore —% < filx)=0

similarly we find forxin B,,0 < f,(x) <

3
Now suppose

xEY—(Aluﬂljthen—gc‘:f(xjﬂig

1 1 1., 1 1 1 1
and — 3 =381 (x) < s lies hetween—g + (_Ej and T3
he.—7 < filx) < S -Thenwe note thatgoubf; = -7, Luwbf; =
To see this we note that there is an n; € N such thatforalln = n,
1
f(an) = T
This implies that for n>n;,a, €N
It follow that
f=—1
and hence limtf,(a,) = —Z and g.l.b, f, = —3
It follows similarly that lim . (b,) = —% and l.u.by f; = %

S N el Y
A=A [ 3 ’3=] Ay [ 3’3{ 3)]
=1 i E = -1 £ 5 5
By =1y [35 ’:a] fi [3 ’3’3]
It is clear that A»,B> are closed subsets of Y and so closed subsets of X
We claim that A» is non-empty

We know that
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o | b

lirn:'z 0 fltﬂ’uj =

There fore thus is an n, € N such thatforalln = n,

_3 = ﬁl[ﬂ::] = ai:,
It follows that for all n = n,

a, E A,and g.l.by f, = —g

Similarly

1. b&.. fl = ;

Since X i1s normal there is a continuous function
g1 X~ [-3.3]

Such that g,(4,) = — % g8, =(B,) = %

We set

f=fi= - g,. It is checked that

lim,_ f.(a,) =— G):, lim, . f,(b,) = G):

inductively we construct a sequence of continuous function on X

1 =
such that N B

R e & A 6 I — (1)
|F -+ +e| <) s 2)
If we set £, = £— 2 (g, + -+ Za)ecerreerennnn 3)
Then

g-L.byf, = —G)m and L. byf, = Gjm

Suppose we have defined gl........... gm having properties 1,2,3 define

Am+1==ﬁ;1([—(§1j'—éfijm]]
Bne=fa ([33) G) )

Then it is easily checked that
4) Ay 1q Byyeq are closed subsets of X

5) A 18,4, are non-empty

6)glb,  fn=—(2)" andlub, £, =(3)
By uryshon’s lemma there is a continuous function.
g X > [=(5) () ]

Such that

Zme1(Aps) = — (%) Zm+1(Bms1) = (%)
We find that g1,....... ,gm+1

Satisfy conditions (1),(2),(3).
Since

Lymtl
lgall < (3)

3
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By weierstars M- test we obtain that the series 25,-; g,, converges uniformly to a function
g:X— R . As a limit of a uniformly convergent series for functions. X% _, g _.
g is continuous. And we have

[ el = [~ i, + 4 20
= lim,, Hf—§ (81 -+ 8m)
< lim, G]m =0

Thus we have extended f to X; ig. Is the extension

14.1.2: SAQ : Prove the converse of Tietze extension theorem:

Let X be a topological space. Prove that if every real- valued continuous mappingf of a closed
subspace F of X into a closed interval [a,b] can be extended to a continuous real-valued
mapping f* of X into [a.b] then X is normal.

Proof: suppose Fiand Fy are two disjoint nonempty closed subsets of X Let [a,b]be any closed

interval such that a <b. The mapping f defined by f (x) =a if xeFiand f(x) = b if xeF> is then a
continuous mapping of the closed subs are Fi UF;into [a.b], Then there exists a continuous
function f* of X into [a.b] such that f'/ F{UF, = f. If ¢ is any real number such that a<c <b
then ™! ([a,c]) and ! ([c.b]) are disjoint open sets containing F; and F» respectively. Thus X
is normal.
The following example shows that the closedness of F is essential in theabove the
theorem.

14.1.3: Example:

Let X=[0,1]and F — (0. 1). Since X is a metric space, it is normal. F is not closed in X.
Define. f: F—[-1,1] by f(x) = sinG]. Then f is continuous. Since lim, _, . f(x) does not

exist f can not be extended to a continuous mapping f*of X into [-1. 1].
We now turn our attention on the metrization problem. We begin with thefollowing
example.

14.1.4:Example: The Infinite dimensional unitary space ¢* consisting of all sequences of
complex {x,,} such that X%, lx,|* < o is also denoted by I* and is a complete metric space

with respect to the metric defined by d( (x,,)(v,,)) = {ZZ=,(x, — }r,fj}i

We denote the topology induced by this metric by Ta .Clearly 1> " where is the space of
all sequence of complex numbers.
Since C" = [, C" where Cy = € ¥n,LC" has the product topology on it where T, is topology
equipped with the usual topology induced by the metric d,,(z,,z,) =z, — z,| ¥n = 1 and
z, € Cz, € C we denote the restriction of the product topology on ¥ to I by T and prove that
Tc,. T,
Fork € Nand § > Owrite S(k,8) = {z = (z,,) € C":|z,.| < &) these sets S(k, &) are the
typical subbasic open sets of d that contain @ € C"

Letki<............ <k: be a sequence of natural numbers and let &1, do,........... , 0, be a sequence of
positive numbers. The sets
S(k,d) =5k ks ik, 61,80, , b))

=Sk, 00N e e .. S(K,, 6)

={z)ec" |z, | <8, ..|z, [< 6]}
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are the typical basic open sets of C¥ that contain 0 € €V
if z€ I* and ||z|l < & then
lzgl < llzll <&

and so

5;(0) = 5(k, &)

This implies T & T,;. We claim that there are no sequences ki,ko,.......... k; of natural
numbers and &1, do,........... ,0: positive numbers such that 5(k, ) € 5;(0)

To see this we set & , = Min{d, ...d,}

Choose any positive integer k. Take any sequence Z(k,8,) = {z;, ... 2y, 0.0 ... ... 0}
|2, < 4y,

The sequence is in 12. This sequence is also in S (k. &). However if we take Z,, = %"ju-
n=12 . .....k
we have

12 (K So) | = 28,
if -8, > i.ek }5
120k 00) || > &

andso Z(k,0,) € S(k, &)

The following basic fact about product topology will be in Uryshon’s embedding theorem.
14.1.5: Proposition :

Suppose that [ is a set, for each in I, (A;,T;) is a topological space and (A, T) is the product of
the (A,T). Let Pi: 4 —4be the projection of A onto the i factor Pi((xs)) = xi. Then

(1) P; is continuous ; (2) P; is a open map and
(3) If'Y is a topological space and f: Y — 4 is any map, then fis continuous iffp; of is
continuous for all in fin L.
Proof : Let us recall that foriel, I(J) = 1-{J},
Jl Lreveemeen R JmEI,I(Jl,Jz, ......... ,Jm) and for Vy,...... V-n ......... V-n_ in 4; ...... A.
the sets V; x........ x V; x I1.. 107yt ) Az are basic open sets for T

1) Suppose V7 is an open sets Ay Then P_,-‘l[L{J) =1V ]_L-E;,:_,:,Ai is a sub basic open set

of T. This implies that P;is continuous.
2) Itis enough to prove P J(V) is an open subset for every basic open subset Vof T. Let

- _(vr if J=I ,
V=", XX V; X ey ;A then PV = (A; e 7Y and so 2 is
proved
3) Consider W; € A; and [p}-,f)_l(leﬂ-)
we have

-1 .

[P}-,f) [DV}) =W xTLecp 4))

Therefore p,, of is continous for all j implies.

1)
is an open set of Y for all sub basic open sets V of A. This implies that f is continuous. Then
rest is clear.
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we recall a definition.
14.1.6: Definition :
Suppose (X, T) is a topological apace we say that (X,t) is metrizable.
If there is a metric d on X such that the topology T4 induced by the metric don X is the
same as T : T=Ty

14.1.7: Proposition : Let ], = [D,%] be given the usual topology and let J = I,z J,, be

the product space. with the product topology T define d{(x,v) = X%, [x, — v, |
where x = (xy), y = (yy) are elements of J. Then d is a metric on J and thetopology T4

induced by d is the same as T.

Proof : We leave the proof that d is a metric to the reader. In the case of I wehave just
proved that T € T
The same method will give us in this case also T & T}
We shall now prove T; & T
To get a clear idea we shall first prove that the open sphere 55 (0).
contains a basic open neighborhood V of O with respect to the producttopology.

We get
dp = Min{1,8}

We can find a positive integer ng such that + < &e

g

[

We set vV =TI2. [ ‘:—;2—,{] x Hf:;znﬂfk
For any x = (x0) in V we have d(x,0) =

_ %
E z x;; +Ek ng,+1 YK

n 1
= ZAD J_n -nK + EK=:-1D+J_:_K

Thus V € 5;(Q). Suppose now @ = (a,,) € ] and we are given 5z(a). As above
we get §, = min{1, 8} and choose an ng such that 1< ? .If m =< ngy then we choose

ng 2
intervals as follows

_ g 1 dp 1
Im —(me T o oM 'a:m_l_ om n.fm

Img 2 Ing
This is an open interval of J, and
_ n
V= Hmn 1 m Hk :lzn+1-lrk
is a basic open set containing « suppose x € V. Then
n
Zleg — agl = E = |x;; “AI + XE- n salxg — agl

L
E=1 nK + EIL =ng -|-an

an a_,:, =&
- "= Yo

Thus V' € 5;(ar) this implies that every point & of an open set U with respect to the metric
technology Tq has a neighborhood V(&) with respect to the product topology T. So we

have UET 1.e: T; £ T.
Thus the proposition is proved.

= —
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14.1.8: SAQ: Let X be a topological space and F a closed subspace of X. Suppose every real-
valued continuous mapping f of F into [0,1] can be extended to a continuous real-valued
mapping * of X into [0,1]. Prove that X is normal.

14.1.9: SAQ: Let X be a topological space and F a closed subspace of X. Suppose every real-
valued continuous mapping f of F into [-1,1] can be extended to a continuous real-valued
mapping £* of X into [-1,1]. Prove that X is normal.

14.2: MODEL EXAMINATION QUESTIONS:

1. State, and prove Tietze extension theorem.

2. Let X be a normal space, Y aclosed subspace of X and f a continuous real function
defined on Y whose values liein a closed interval [a,b]. Then f has a continuous
extension f' defined on all of X whose values also line in [a, b].

14.3: EXCERCISE:

1) Prove that a separable, metric space is second countable
2) Show that every metric space is normal
3) Does the continuous functionj—lE defined on R—{O} have a continuous extention to the

whole of R ?
4) Let X=[-1,1],Y = [—% i] Define f, fi, f> by
flx) = |x| for x€ Y_ )
filx) =lx| for x € X and
x| if x €Y and
Hx)= { % FreX—v show that fi and f; are continuous extension of f.
5) Define f(x) = x sin ffor x €(0,1] show that f has a unique continuousextension on

[0,1].
14.4 SUMMARY:

We learnt that normal space, metric space and continuous extension. We have proved that
Tietze extension theorem.

14.5 TECHNICAL TERMS:

1. Normal Space: A topological space X that satisfies the separation axiom Ta, meaning
that any two disjoint closed sets can be separated by disjoint open sets.

2. Closed Subspace: A subspace Y of a topological space X that is closed in the
topology of X.

14.6 ANSWER TO SELF ASSESSMENT QUESTIONS:

14.1.8: SAQ: Let A and B be two disjoint closed sets in X. We need to find disjoint open sets
U and V in X such that A € U and B € V. Define a function f: A U B — [0,1] by f(x) =0 if x
€ A and f(x) = 1 if x € B. This function is continuous on A U B. By the given condition,
there exists a continuous function f*: X — [0,1] that extends f. Let U =f 7'([0,1/2)) and V =
f '((1/2,1]). Then U and V are disjoint open sets in X such that A S Uand B € V.
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Therefore, X is normal.

14.1.9: SAQ: Let A and B be two disjoint closed sets in X. We need to find disjoint open sets
U and V in X such that A € U and B € V. Define a function f: A U B — [-1,1] by f(x) =-1 if
X € A and f(x) = | if x € B. This function is continuous on A U B. By the given condition,
there exists a continuous function f*: X — [-1,1] that extends f. Let U =f “([-1,0)) and V =
f 7((0,1]). Then U and V are disjoint open sets in X such that A S Uand B S V.

Therefore, X is normal.

14.7 SUGGESTED READINGS:

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book
Company, New York International student edition.

Prof. B . Satyanarayana



Lesson — 15

URYSHON’S EMBEDING THEOREM

OBJECTIVES:

The objectives of this lesson are to.
¢ To understand the concept of normality and second-countability.
% To prove the Urysohn Imbedding Theorem.

STRUCTURE:

15.0: Introduction

15.1: The tietze extension theorem

15.2: Model examination questions

15.3: Exercise

15.4: Summary

15.5: Technical terms

15.6: Answer to self assessment questions
15.7: Suggested readings

15.0 INTRODUCTION:

Urysohn's Imbedding Theorem is a fundamental result in topology that establishes a connection
between normality, second countability, and metrizability of topological spaces. In this lesson the
theorem provides a sufficient condition for a topological space to be metrizable, which is essential in
various applications. The theorem shows that normality and second countability imply metrizability,
highlighting the importance of these properties.The theorem enables the imbedding of topological
spaces into metric spaces.

Consider the unit square X = [0,1] x [0,1] in R?, equipped with the subspace topology inherited from
the standard topology on R2.

This space X is:

1. Normal: Since R? is a metric space, it is normal. As a subspace of R2, X inherits this property.

2. Second-countable: The standard topology on R? is second-countable, and X inherits a countable
basis from this topology.

By the theorem, X is metrizable. In fact, the standard metric on R?, restricted to X, induces the
subspace topology on X.This example illustrates the theorem's statement, showing that a normal and
second-countable space (the unit square X) is indeed metrizable.

15.1: THEOREM : (URYSHON IMBEDDING THEOREM )

Suppose X is a topological space. which is normal and secondcountable. Then X
is metrizable.

Proof : Let {U_ 1}, ..
be a basis for for the open sets of the topology of X. We consider the ordered pairs of
(m,n) € N ¥ N of natural numbers such that U, EU _c_U, .

we haveassumed that X is normal, By Urysohn’s lemma there is a continuous function.
fmn:X = [0,1] € R such that
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1) frnn =1 on U, and

2) foun = 0 outside U,
The set of ordered pairs (m, n) we have considered is a subset of NxN which is a countable
.So the set functions is a countable set. We write them in a sequence { f1,f>,...,fn,....... }
corresponding to each p € N there is a unique ordered pair (m, n) such that f,,,, = f, and
conversely. We define a map F: X — ] by

Flx )_( fulx) f'.r:" L ’fn x},........)

we recall that p,.:J —= [,
is the projection map and that F: X = J is continous if and only if p; F = 5

is a continuous function on X. If follows that F is a continuous map into theproduct J of
topology spaces Jj.

We denote F(X) by Y. We consider Y with the topology T, induced by the product topology
T onJ. We have just proved that F: X — ¥ is a continuous onto map.

We will now prove that F is one - to - one and open.

F is one—to—one : Let x,¥ € X and x # y. Then there is a basic neighborhood U,, of x, such
that x EU,CU,, and y €U,

Since X is normal we may choose a basic neighborhood U, of x such that x eU_ U _cU_
Then we have a p = p(m, n) such that fp(x)=l and fp(y)=0

This implies that F(x) = F(v)

F:X — Y is an open Map : It is enough to show that the image of each U,, is an open subset
of Y Letv EF(U,)

We shall prove that there is a neighborhood V of v with respect to thetopology T
onY induced by T on J such that V € F(U,_)
Since v € F(U,,) there is an u in U,, such that v = F(u)
The space X is normal and u U, .Therefore there is a basic open set U, such that
x €U, EU_cU_ corresponding to this pair (m, n) of natural numbers there is a p = p(m, n)
such that fp = fmn.
we have f,(x) =0 if x €U,

1
aF+1

is a sub basic open set of J since fy(u) =1. The point v = F(U)eV. If x in Xsatisfies
F(x)€V then we must have
= f (x) =

that is ; <f; [xj
this implies that x €U,,.
Therefore we have proved that V. n'Y & F(U, )
That is F (U n ) is an open subset of Y. Since F is continuous and also one - to-one it follows
that F: X = (¥,T') is a homeomorphism

In the previous result we have proved that

T =Ty onJ. Therefore T on Y is the same as the topology Induced by themetric on Y. Thus

we have, proved that X Is homeomorphic to a metrizable space. So X is metrizable.
15.1.1: SAQ: Show that a compact hausdorff apace Is metrizable it is secondcountable

Proof: Let X be compact Hausdorff space. Then it is normal Suppose X issecond countable.
Then by urysohn Imbedding theorem, X is metrizable. Conversely suppose that X is
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metrizable. By SAQ 11.1.13 since X is a compactmetric space, It is separable. Since every
separable metric space is second countable it follows that X is second countable.

Remark : Theorem 15.1.1 provides an example of a metrizable space . Inthis Theorem we
show that the Tychonoff product of metric spaces is metrizble.In an example we show that the
metric topology of the infinite dimensional Euclidean space T (also denoted by 1?) is stronger
than the relative topology inherited from the Tychnoff product "

15.1.2: Theorem: Suppose for each natural number n, (A, d,)) is a metric spaceand T,,. is the
topology induced on A, by d,,. Then the product space (A, T) where A =11, .y 4, and T

is the product topology, is metrizable.

0<d,(xy) < lforallx,y in A,
For x= (Xn) and y= (Yn) in A define d(x V) u =1 ﬂ11 du [:xu!vu]

Since 0 = d,,(x,v) = 1and En:l% is convergent

The series on the right hand side converges, hence the above definition ismeaningful.
For x = (x). y =(y) and z = (z,,) in A we have

i d(xy) =0ﬁd,!(x,!,v,!] =0Vnex, =y, nex=y

1. d(.’l’ U] :lz—J. ﬂ"l. (.’J‘.'”,V”] = n (.’1'”, V”] = d[V .'1'] and

n= J.ﬂ"l.

iii.  d(x,z) = r_'i” (x,.z

n= J.ﬂ"l. :lz’

::: Z?! 1 ﬂ"l. £d?! (x?!’v?!j + d?! (x?!’z?!)}

= ;:: 1 oM {du [x:lzruuj} + Eu—l ﬂj.-"l. {du (.’?{'”,Z” ]
Thus d is a metric on A. We denote the topology on A Induced by d by T".

What we prove is That T=T".
For this it is enough to prove that
1) given an open set V of T and a € V there is a neighborhood U*(a) of @ with respect
to T! such that U*(2) € V and
2) given an open set U' in T' and # € U there is a neighborhood V(&) of @ with respect
to T such that V(a) € U*,
Further it is clear that the statement (1) if proved for a class of sub basic open sets implies the
statement for all open sets of T. So it is enough to prove (1)and (2) for sub basic open sets V and
U.
Let V be a sub basic open set with respect to the product topology T. Thenthere is a natural
number m and an open set V (m) of A, such that

V= V[m] s l_[;lej".l' f].”

Let @ = (a,,) € V. Then a,, € V(m] since Tn is the topology induced by the metric di there
isa d = 0such that Sg(a,, ) S V(m)

then we claim that the sphere of radius — centered at e.

With respect to d is contained in V: § s (@) & V Suppose x € 55 (a).

Then we have
1
ey

d(x,.a,) < d(xa)
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<=
This implies that x,,, € 5;(e,,)
and so x € V. We have, provide (1). Let U! be an open set in the topology generated by the
metric d on A and let £ € U*. By the definition of the topology T! there is § = 0 T* such that
Sg(B) < U’
we choose a natural number k such that
F<zie2" ! >2
This is possible because of Archimedian property of R. we claim that

L-r(ﬁ] = i:ls"_—k_(ﬁ:] X HrzH{ }1:'2

is contained in S5(f8) suppose v € V() then
1 o 1
d(}’.- JG) = E:{:j_:_v dr [}F,.,ﬁ,.) + E:: =k -I-1:Tdu (}F:lzrﬁ:'z)

= E:{Cl j-_" d:" [.—!'F:'"Jg:"j + %

k11,1
= E:"=J_ a7 " Ak + L
1 1 1
< E T o

Therefore
V(B) S S;(8) € U* and We have proved (2)
The result is proved.

15.1.3:SAQ: Suppose X is a topological space that is normal and second-countable. Prove
that there exists a homeomorphism between X and a subspace of the Hilbert cube.

15.1.4:SAQ: Let X be a normal and second-countable topological space. Prove that X can be
imbedded into a compact metric space.

15.2: MODEL EXAMINATION QUESTIONS:

1. State and prove UrySohn’s imbedding theorem
Show that the product topology of a countable collection of metric space is
metrizable.

15.3: EXCERCISE :

1) Show that a second countable normal space is metrizable

2) LetIk =[0, 1] ((Vx €[0,1])) equipped with the usual topology, Show that product topology
an [1,.=fp.17 118 normal but not metrizable.

3) Given an example of a metric space which is not second countable.

15.4 SUMMARY:

We learnt that the countable, product topology and imbedding. We proved that Urysohn’s
imbedding theorem.

15.5 TECHNICAL TERMS:

1. Normal Space: A topological space X that satisfies the separation axiom Ta, meaning
that any two disjoint closed sets can be separated by disjoint open sets.
2. Second-Countable Space: A topological space X that has a countable basis for its
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topology.

3. Metrizable Space: A topological space X that can be endowed with a metric that induces
its topology.

4. Imbedding: A homeomorphism between a topological space X and a subspace of another
topological space Y.

15.6 ANSWER TO SELF ASSESSMENT QUESTIONS:

15.1.3: SAQ: Let X be a normal and second-countable topological space. We need to prove
that there exists a homeomorphism between X and a subspace of the Hilbert cube. Since X is
second-countable, it has a countable basis {U_n}. For each n, define a continuous function

f n: X —[0,1]suchthatf n(x)=0ifx € U nand f n(x) =1 if x € U_n. Define a function f:
X —[0,1]"» by f(x) = (f_1(x), f 2(x), ...). Since each f n is continuous, fis also continuous.
Moreover, f'is injective, since if X # y, then there exists n such that x € U nandy € U _n, so
f n(x) # f n(y). Finally, fis a homeomorphism onto its image, since it is continuous and
injective, and its inverse is also continuous.Therefore, there exists a homeomorphism
between X and a subspace of the Hilbert cube.

15.1.4: SAQ: Let X be a normal and second-countable topological space. Since X is second-
countable, it has a countable basis {U n}. For each n, define a continuous function f n: X —
[0,1]such thatf n(x)=0ifx € U nand f n(x)=1ifx € U _n. Define a function f: X —
[0,1]"® by f(x) = (f _1(x), f 2(x), ...). Since each f n is continuous, f is also continuous.
Moreover, f'is injective, since if X # y, then there exists n such that x € U nandy € U _n, so
f n(x) # f n(y). The Hilbert cube [0,1]"*® is a compact metric space. Therefore, f(X) is a
subspace of a compact metric space.

Hence, X can be imbedded into a compact metric space.

15.7 SUGGESTED READINGS:

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book
Company, New York International student edition.

Prof. B . Satyanarayana



LESSON -16
CONNECTEDNESS

OBJECTIVES:

The objectives of this lesson are to.
% To understand the concepts of connectedness in a topological space.
++ To understand the concepts of a connected topological space.
% To understand the concepts of discrete and indiscrete topology.
+»+ To understand the concepts of a continuous function between topological spaces.

STRUCTURE:

16.0: Introduction

16.1: Connected spaces

16.2: Short answer questions

16.3: Summary

16.4: Technical terms

16.5: Answer to self assessment questions
16.6: Suggested readings

16.0: INTRODUCTION:

In this lesson we study connected topological spaces. which is one of the most important
topics in topology. Intuitively; a connected space may be thoughtof a space consisting of a single
piece. We give a formal definition of a connected topological space. We prove that a subspace
of the real line R is connected if, an only if. it is an interval. We also prove that the property of
connectedness is preserved by continuous functions. We further prove that the productof a
non-empty class of connected spaces is connected and hence R" and C" areconnected. We also
introduce the concept of components of a topological space. We study some elementary
properties of components.

16.1: CONNECTED SPACES:

16.1.1: Definition: A topological space (X. T) is said to be connected if X can not be
represented as the union of two non-empty disjoint open sets. In other words; if X=AUB, 4,B
eT,A+¢9, AnB+ é¢implies B= ¢ . then X is said to be connected.

16.1.2: Definition: Let (X. T ). be a topological space. If there exists A. B in T such that X =
AUB,A+# ¢,B+ ¢and AN B=¢then this representation of X is called a disconnection of X. If X
is not connected we say that X is disconnected or equivalently X is disconnected if and only if,
X has a disconnection.

16.1.3: Definition: A subspace Y of a topological spade X is said to be connected if Y is
connected with respect to the relative (induced) topology in Y.

16.1.4: Lemma:A subspace Y of a topological space X is connected if and onlyif, Y is not
contained in the union of two open subsets of X whose intersectionswith Y are non-empty and
disjoint.
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Proof. Suppose that Y is connected. Let ¥ < 4 Bwhen: A and B are open in X. LetC= 4NY

,D=BNY.Then Y=CuUD.Cand DarecopeninY. If Cn D= ¢ and Then D = ¢ since Y is
connected.

Conversely suppose that the stated condition holds. Let Y = C UD whereC and D are disjoint
opensetsin Y. Lete C=YNA,D=Y~ B where Aand B are open in X. Then Y ¢ 4UB.Ilf c# ¢
then ANY #¢.1.e. BnY=¢ D= ¢ . Hence Y is connected

16.1.5: SAQ : Let X be any non-empty set. Let T be the indiscrete topology on X. Show that
(X.T) is a connected topological space.

16.1.6: SAQ: Let X be a set with at least two elements. Let T be the discrete topology on
X. Show that (X, T) is disconnected.

16.1.7: Lemma: let X = {a.b },Y =[ ¢, d ]. Let T be the discrete topology on X and let Ty be

the discrete topology on Y. Then (X.Tx ) and (Y.Ty ) are homeomorphic. Thus there exists a
unique discrete space with two points upto isometry.

Proof. T, :{ ¢ :{a}{bL X} Ty={¢ {c}{d}.Y}
Define the mapping f: X —» Y by

f {a) = c and f (b) = d. Then f is a bijection which is continuous and open. Thus f is a
homeomorphism.

16.1.8: Notation: let 0 and 1 be two symbols. The discrete two point space is denoted by
{0,1}.

16.1.9: Theorem :A topological space X is disconnected if and only if there exists
continuous function from X onto the discrete two point space {0,1}.

Proof: Suppose that X is disconnected and Let X = AUB be a disconnection of X. Then
A and Bare non-empty disjoint open subsets of X.

_(0ifx€EA
Define f: X — {0,1} by f(x) = {1 if x€B
Then ™' (¢ )= ¢ £'1({0})=A.f'({1})=B.and f' ({0.1}) = X and all these sets
are open in X. Hence f is continuous.
Also f'is onto. since A # ¢ ,and B = ¢

Conversely suppose that there exists a continuous surjective: function f: X— {0.1} Let A=
{xeX/f(x)=0} and B: {xeX/f(x)=1}. A and B are non-empty, since fis surjective. Also A N B
=¢ ,{0} and {1} are open and A= f! ({0}) =B =f"! ({1}). Since fis continuous. we have that
A and B are open in X. Thus X=Au B is a disconnection of X. Thus X is disconnected

16.1.10: Theorem: Let f: X — Y be a continuous mapping of a connected topological
space X into a topological space Y. Let Z = ( X ) be the (continuous)image of X. Then Z is

connected.

Proof: If Z is not connected, then by 16.1.9there exists a continuous functiong from Z onto the
discrete two point space {o, I}. Then the mapping h : X— {0,1} defined by h(x)=g(f(x)).
Being the composite of two continuous functions, is continuous and it is also onto. This
implies that X is not connected. which is acontradiction to the hypothesis. Hence Z is
connected.
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16.1.11: SAQ: Give a direct proof of theorem 16.1.10 without using theorem . 16.1.9.
16.1.12: Theorem: The product of any non-empty class of connected spaces isconnected.

Proof: Let {X;} be a non-empty class connected spaces. Let X = [I; X; be the product pace of

the topological spaces {Xi} space that X is connected. it is enough to prove that any
Continuous function from X into the discrete two point space {0,1} is not onto.

Let f: X— {0,1} be a continuous function.

Part A: We first prove that if two elements of X differ in atmost one componentthen they have
the same image under the mapping f,

Leta = {ai} and x = {x;} € X and let it be an index such that x; = ai for i # i

Define f; :x =X by f. (t) = {y,} where¥, =tandy,=a, fori#f, is continuous
mapping from X; — X.

Now fof; : X; — {0.1} is continuous. Since X, is connected fof; is a constant

Now fof, {a, } = f(a) and f(x) = fof, {x, }. fof,_is a constant imply that

fof; {a; .} = fof,_{x; } Thus f(x) = f(a).

B. let a = {a) be a fixed element of X. Now we prove that if xeX and X differsfrom a in atmost
n components then f(x) = f(a).

Ifn=1 then the result is true by part A. Suppose that the result is true for n = k. let xe X such that
x differs from a in almost k+1 components, say ii,12,...... T, Ik 1.

Define y ={yi} X by Yip = %, forf=12,....k,andyi=ai fori # iy,iq wessip.

Then x and y differ in at most in their i(k+1) th component.

.-.By Pan A we have f (x) = f(y). Also y and a differ at most in their ii,ia,....... ix. components.
By induction hypothesis we have f (y) = f (a).
~.f(x) = f(a). Hence the result is true for all n.

C. Fixsome aeX.
Let A={xeX / x differs from a in atmost a finite number of components}.

Then it can be shown that A is a dense subset of X. Also by pan B. f is aconstant on A.
Since {0,1} is a Ty - space, we get that f is a constant mapping on X. Hence f is not onto.

Thus there is no continuous mapping of X onto the discrete two point space {0,1}. Hence
X is connected.

16.1.13: SAQ: Let X be a topological space and let Y be a Ty — space. Letf: X—Y

be a continuous map such that f is a constant on a dense subset A of X. Prove that f is
constant on X.

16.1.14: Theorem: A subspace of the real line R is connected if. and only if it isan interval.
In particular R is connected.

Proof. Let X be a subspace of R. Suppose X is connected. To show X is an interval

1) Suppose that X is not an interval. Then there exist real numbersr, s, t 5

r<s<trteXand s¢X. The sets A=X"( —w,s)and B=XN( s, + o ) are non—empty
disjoint open sets in X such that X = AUB

Hence X is not connected .

2) Assume that X is not connected. Let X = A\UB be a disconnection of X. Then A and B are
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non-empty and disjoint closed, as well as open, subsets of X.We can choose x € Aandz € B
such that x #z. We may assume that x <z. Nowx,zeX. [x.z] NA is bounded above by z. Hence
y=sup([x.z] nA) exists in R. It is clear that x< y< z, Since X is an interval. x,ze X. we have

y€e€X. Since A is also closed in X, the definition of Y shows that y€A.
. y<z Alsoif € >0theny <y + €<z implies y + €€ B. Since B is closed in X we get

y€B. Thus y€A n B, which is a contradiction since A and B are disjoint.
Hence X is connected
The proof is complete from (1) and (2).

16.1.15: Theorem: The range of a continuous real valued function on a connectedspace is an
interval.

Proof. Let f: X— R be a continuous real valued function. Let Z = f (X).

By theorem 16.1.10, Z is connected. By theorem 16.1.14, we get that Z is an interval.
Theorem16.1.15may also be stated as follows: Let f be a real valued continuous mapping
on a connected space X. Let x,yeX. Let ¢ be a real number

5f (x) < ¢ < f(z). Then 3zeX > f(z)=c. Thus theorem 16.1.15 is also called “Intermediate value
theorem”.

16.1.16. Theorem : The spaces R" and C" are connected.

Proof : We know that R. being an interval, is connected with the usual topology. We also
know that R" as a topological space can be regarded as the product of n copies of the
connected space R. Hence by theorem 16.1.12.

We get that R" is connected. We show that C" and R?" are homeomorphic as topological spaces.
Let z=(z1 ,22 ,...,z0 ) € C", Let zx = ax +ibx fork=1,2,.....n.

Define f:C"— R*" by f(z) = (aj.by,ap.ba......... an.bp)

Clearly f is one-one and onto and [f (z)| = |z|.

Thus f is an isometry of C" onto R®" and hence f is a homeomorphism. Since R?" is connected
we have C" is connected.

16.2: SHORT ANSWER QUESTIONS :

16.2.1: Prove that X = AU B is a disconnection of a topological space X iff A and B are non-
empty disjoint closed sets.

16.2.2: Show that a topological space X is connected if, for and only if, every non-empty
proper subset of X has non-empty boundary.

16.2.3: Show that a topological space X is connected if, and only if, for every two points
in X there is some connected subspace of X which contains both.

16.2.4: Prove that a subspace of a topological space X is disconnected iff it can be
represented as the union of two non-empty sets each of which is disjoint from the closure
in X of the other.

16.2.5: Show that the graph of a continuous real function defined on an interval is a
connected subspace of the Euclidean plane.

16.2.6: If X is a countable. connected topological space. show that constant functions are
the only real valued continuous functions on X.
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(Hint. Use Theorem 15.1.15 and the fact that every interval with more than one point in R
is uncountable).

16.2.7: Determine whether the following are connected subspaccs of R?
L{x,y)ER/x# 0}
. {(x,y) ER*/x* + )’ =1}
fii.  {(xSin(1A4)/0 = XER)
iv.  {(xy)ER¥x # y}

16.2.8: For any completely regular space X. prove that X is connected iff the Stone- Cech
compactification £ (X )of X is connected.

16.2.9: 1f T and T, are topologies on X such T1 c T, and (Xy, Ty) is connectedprove that
(X5, Ty) is also connected.

16.2.10: Prove that a topological space X is connected iff every continuousfunction from
X into the discrete two point space {0, 1} is constant

16.3 SUMMARY:

We learrnt that the connected spaces and connected topological space. We have proved that
the range of a continuous real valued function on a connected space is an interval.

16.4 TECHNICAL TERMS:

Topological space; A set with a topology.

Topology; A collection of open sets.

Open set; A set that contains all its limit points.

Connected space; A space that cannot be written as the union of two disjoint non —
empty open sets.

5. Discrete topology; A topology where every set is open.

P

16.5 ANSWER TO SELF ASSESSMENT QUESTIONS

16.1.5. SAQ. T= {¢ ,X}. Thus X is the only non-empty open set and hence X can not be
represented as the union of two non-empty disjoint open sets.

Hence (X, T ) is a connected space.

16.1.6:SAQ: Letac X. Then B=X\{a} isnon-empty. Since T is the discrete topology.Every subset of X
is open in (X,T). Thus X = { a } UB is a disconnection of X.

16.1.11:SAQ: Let f: X— Y be a continuous function and suppose X is connected.
Let Z=f (X).

Let Z = AUB be a disconnection of Z.

Then 3 open sets G and Hin Y suchthat A=Z " Gand B=ZNH.

Let Gy =f *(H)and H; = f~* (H). Then G; and H; are open in X.
A+gp=23FxeX3f(x)EA=ZnNnG

=f(x)Ec=>Xxef *(G)=¢G,
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similarly 3 ¥y € X 3y € f1(H) = H,. Thus G, #= ¢ and H,
tEG NH, = flt)EGand f(t) EH
= flt)eEZnG=Aandf(t)€ZnH =B
= f(t) € A N B which is a contraditction.
G NH =¢
teX=f(¥)ez
= f(t)EAorf(t)EB
=t fHG)ort e fF(H)
= teGorteH,
= t€ G, UH,
Thus X = G; U Hj is a disconnection of X, which contradicts the hypothesis that X is

connected. Hence Z is connected.

16.1.13: SAQ : Let f(x) = vx e 4, since Y is a T— space and a€Y,{a} is closedin Y.
Since f is continuous f!({a}) is closed in X. We have

Ac f{ah=4cf*{a) =Ff"(a)

=Xx=4< f({a})

= f(x) = {a}

Thus f'is a constant map on X.
16.6 SUGGESTED READINGS:

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book
Company, New York International student edition.

Dr. M. Gnaneswara Reddy



LESSON -17
THE COMPONENTS OF A SPACE

OBJECTIVES:

The objectives of this lesson are to.
% To understand the concepts of components of a topological space.
+*+ To understand the concepts of a connected topological space.
% To understand the concepts of a connected subspace of a topological space.

STRUCTURE:

17.0: Introduction

17.1: Conected space

17.2: Model examination questions

17.3: Exercise

17.4: Summary

17.5: Technical terms

17.6: Answer to self assessment questions
17.7: Suggested readings

17.0: INTRODUCTION:

In this lesson, we will prove that a topological space X can always be de-composed into a
disjoint union of maximal connected subspaces of X, which wecall the components of X.

17.1: CONECTED SPACE:

17.1.1: Definition : Let ( X. T) be a topological space. A connected subspace ofX is said to be
a component of X if A is not properly contained in any other connected subspace of X. That
is, a sub space A of X is a component if it is connected. and 4 < B, B connected implies A =
B.

17.1.2: If X is a connected space. then X is the only component of X.

17.1.3: In a discrete topological space X. any set with more than one element isdisconnected.
Hence singleton sets are the only components of X.

17.1.4: Example: In the space Q of rational numbers with usual topology, any subspace A
with more than one element is not connected; for if r, s€ A and r < s we can find an irrational
tar<t<sand A =[4An(—m,t)]U[4 N (t+)]is a disconnection of A. Thus singleton
sets are the only components of Q. But the usual topology in Q. is not discrete.

We prove the following two theorems before we attempt to decompose aspace into its
components.

17.1.5: Theorem: Let X be a topological space, let {Ci} be a non-empty class of connected
subspaces of X such that "C; is non-empty. Then the subspaceC = UC; is connected.
Proof: SupposeC < 4 U B here A and B are open sets in X such That is Aj = CNA

and By = C MB are disjoint. For each 1, the connected set £; < C and hence £; c AUB. (C; N 4)
N(C; nB)c A1 n By =4. Since C; is connected by Lemma 16.1.4. either C; M A = @ or
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C,NnB=¢. Thus €, €A or C; S B. Since NC; = ¢ we have either all the C; = ¢ are
contained in A or all the £; are contained in B. Thus £ =UCL; £ 4 or £ =U L, & B Hence
CEAorC S B. ThusCnB=¢or CnA=¢ .Hence C is connected.

17.1.6 : Theorem : Let A be a connected subspace of a topological space X. Let B be a
subspace of X suchthat4 € B © A Then B is connected in particular is connected.

Proof : Assume that B is disconnected. Then 3 open sets G and H of X such that
BcGUH,G|=BNnG#¢,H|=BNnH#¢ and G; nH; =¢

Since A c Bc Gu H and A is connected, either 4 c Hand ANnG=gorH =BNH #¢

Suppose ANG=¢. Then AnG=¢. If AnH=¢ then A NH=¢.Since Bc A we get that
BN G =¢ or BN H = ¢ which is a contradiction. Thus B is connected.
-~ AS AC A byabove 4 is connected.

17.1.7: Theorem : Let X be a topological space. Then we have the following
(1) Each point of X is contained in exactly one component of X.
(1) Each connected subspace of X is contained in a component of X.
(1i1) Each component of X is closed in X

(iv) Aconnected subspace of X which is both open and closed is a component of X.

Proof: (i) Let xeX. Let A= { C < X/ xeC and C is connected subspace of X}

Then A= ¢ since {x}€ Aand X € M-, C

By theorem 17.1.5 C, = N4 € is connected.

If D is any connected subspace of X 3 C_ < Dthen % € D' So, D is in the class A. Hence DE €,
S D= CH

Thus C, is a component of X. If E is any component of X 3 x € Ethen E C C,

Since E is a component and Cy, is connected we have Cy =E .

(1) Let C be a connected subspace of X. If X € Cthen C € C,

(1) Let C be a component. Since C is connected, by theorem 17.1.6. € is connected
€ C Cand Cisacomponent = £ = = C is closed.

(ii1) Let C be a connected subspace which is both open and closed in X. By (ii)7 a
component E 5 CEE. Then C is open and closed in E also. Since E is connected

we have C= ¢ or C =E. Since C is a subspace, we have C ¥ Q, Hence C = E is a component.

17.1.8: SAQ: Prove that a topological space X is connected if, and only if, X hasno non empty
proper subset which is both open and closed.

17.1.9: SAQ: If the product [] X; is connected prove that each X; is connected
17.10: SAQ: Is a component of X Open in X?

17.1.11: SAQ. Prove that the components of a space form u partition of X. If thereare only a
finite number of components of a space X. prove that each componentis open.
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17.2: MODEL EXAMINATION QUESTIONS:

1) Define a connected space and prove that a topological space X is connected iff there is
no continuous function from X onto the discrete two point space (0,1).

2) Prove thatthe product of any non-empty class of connected spaces is connected.

3) Describe connected subsets of the real line R.

4) Prove that the continuous image of a connected space is also a connectedspace,
Prove that R" and C" are connected.

5) Define a component of a topological space. What are the components of Z. the set of
all integers. as a subspace of the real line R with the usual topology?

6) If Ac Bc A for subs paces A and B of a topological space X and A is connected,

show that B is also connected.
Prove that the components of a topological space X are closed subset of X. Can we prove that
components of X are also open subsets of X ? Justify your answer.

17.3: EXCERCISES :

1) Let {Ci} be a non-empty class of connected subspace of a topological space X such that
Ci nCj # ¢ forall r and J. Prove that U C; is also connected. (Hint: proof of theorem

17.1.5)
2) Let Ay. Ay ... A, ... be a sequence of connected subspaces of a topological space
Xsuchthat 4, NA,+s F@ forn=1,2,...... prove that U,.=1 4= is connected. (Hint

let B,, = U; 4,. Then U; 4,, = U} B,,. Use induction to prove B, is connected and
use theorem 17.1.5 with the class {B,}).

3) Usetheorem 17.1.5 to prove that X x Y is connected if X and Y are connected.

4) Prove that an open subspace of the complex plane is connected if, and onlyif. any
two points in it can be joined by a polygonal line.

17.4 SUMMARY:

We learrnt that the connected space, connected subspace and topological space. We have
proved that Let X be a topological space, let {Ci} be a non-empty class of connected

subspaces of X such that NC; is non-empty. Then the subspaceC = UC; is connected.

17.5 TECHNICAL TERMS:

1. Connected space; A topological space that cannot be written as the union of two disjoint
non-empty open sets.

2. Connected subspace; A subspace of a topological space that is connected.

3. Topological space; A set equipped with a topology, which is a collection of open sets.

4. Component; A maximal connected subset of a topological space.

17.6 ANSWER TO SELF ASSESSMENT QUESTIONS:

17.1.8: SAQ: Suppose X is connected. If A is a non-empty proper subset of X which is both
open and closed then X = AuU(X \ A) would form a disconnection of X. If X = AUB is a
disconnection of X then A (and also B) is a non-emptyproper subset of X which is both open
and closed in X.
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17.1.9: SAQ: Hint. Use theorem 16.1.10 with the projection mapping P;: X— Xi.

17.1.10: SAQ: See example 12.34. Singleton sets are not open in Q. since if [r ]c Q is
open in Q then { r } © QM (a. b) for some open internal (a, b) in R. ButQ (a.b) has infinitely
many points.

17.1.11: SAQ: Let X be a topological space. Each xeX belongs to a unique component Cy
Then = U,y €, . IFC, N C, # @ then C= Cy U Cy
C = Cy. Thus thecomponents of X from a partition of X.

Let Ci, Ca ... Cn, be the only distinct components of X. The X = U, C, and each Cx
being a component. is closed.
For each i, D; = Uj-,; ¢, is closed and hence C; = X — Dj is open.

izl

is connected Cy < C and Cy c C simply C =

17.7 SUGGESTED READINGS:

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book
Company, New York International student edition.

Dr. M. Gnaneswara Reddy
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