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FOREWORD 

Since its establishment in 1976, Acharya Nagarjuna University has been forging 

ahead in the path of progress and dynamism, offering a variety of courses and research 

contributions. I am extremely happy that by gaining ‘A+’ grade from the NAAC in the 

year 2024, Acharya Nagarjuna University is offering educational opportunities at the UG, 

PG levels apart from research degrees to students from over 221 affiliated colleges spread 

over the two districts of Guntur and Prakasam. 

The University has also started the Centre for Distance Education in 2003-04 with 

the aim of taking higher education to the doorstep of all the sectors of the society. The 

centre will be a great help to those who cannot join in colleges, those who cannot afford 

the exorbitant fees as regular students, and even to housewives desirous of pursuing 

higher studies. Acharya Nagarjuna University has started offering B.Sc., B.A., B.B.A., 

and B.Com courses at the Degree level and M.A., M.Com., M.Sc., M.B.A., and L.L.M., 

courses at the PG level from the academic year 2003-2004 onwards. 

To facilitate easier understanding by students studying through the distance mode, 

these self-instruction materials have been prepared by eminent and experienced teachers. 

The lessons have been drafted with great care and expertise in the stipulated time by these 

teachers. Constructive ideas and scholarly suggestions are welcome from students and 

teachers involved respectively. Such ideas will be incorporated for the greater efficacy of 

this distance mode of education. For clarification of doubts and feedback, weekly classes 

and contact classes will be arranged at the UG and PG levels respectively. 

It is my aim that students getting higher education through the Centre for 

Distance Education should improve their qualification, have better employment 

opportunities and in turn be part of country’s progress. It is my fond desire that in the 

years to come, the Centre for Distance Education will go from strength to strength in the 

form of new courses and by catering to larger number of people. My congratulations to 

all the Directors, Academic Coordinators, Editors and Lesson-writers of the Centre who 

have helped in these endeavors. 

Prof. K.GangadharaRao 
M.Tech.,Ph.D., 

   Vice-Chancellor I/c  

        Acharya Nagarjuna University 
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M.Sc DEGREE EXAMINATION 

First Semester 

Mathematics :: Paper IV-TOPOLOGY 

MODEL QUESTION PAPER 

Time: Three hours Maximum:70 Marks 

Answer ONE question from each unit (5x14=70) 

UNIT-I 

1. (a) Prove that in any metric space 𝑋, each open sphere is an openset. 

(b) State and prove Baire’s theorem. 

(or) 

 

2. (a) State and prove Cantor’s Intersection theorem. 

 
(b) Let 𝑋 and 𝑋 be metric spaces and f is mapping of 𝑋 into 𝑋. Then show that 𝑋 is 

continuous at 𝑋∅ iff 𝑋n → 𝑋∅ ⇒ 𝑋(𝑋n) → 𝑋(𝑋∅). 

 

UNIT-II 

 

3. (a) State and prove Lindelof’s theorem. 

 

(b) Let x be topological spaces. Then show that any closed subset of X is the disjoint 

union of its interior and its boundary. That it contains these sets, they are disjoint, and 

it is their union. 

(or) 

 
4. (a) Let f:x y be a mapping of one topological space into another, and let there be given as 

open set base in X and an open subbase with its generated open base in Y. Then show 

that (i) f is continuous if the inverse image of each sub basic open set open and (ii) f is 

open if the image of each basic openset is open. 

 

(b) Let X be a second countable space, Then show that any open base for X has a 

countable subclass which is also an openbase. 

 

UNIT-III 

 

5. State and prove Heine-Borel theorem. 

(or) 

 

6. State and prove Ascoli’s theorem. 



UNIT-IV 

 

7. State and prove Urysohn’s theorem. 

(or) 

 

8. (a) Prove that every compact subspace of Hausdorff space is closed. 

 

(b) Show that the product of any non-empty class of Hausdroff space is a Hausdroff space. 

 

UNIT-V 

 

9. State and prove Urysohn’s imbedding theorem. 

(or) 

 
10. (a) Let 𝑋 be a topological space. If {𝑋i} is non-empty class of connected subspace of 𝑋 

such that is ∩i 𝑋i non-empty, Then show that 𝑋 =∪i 𝑋i is also connected subspace of 

𝑋. 

(b) Show that any continuous image of connected space is connected. 
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LESSON-1 

TOPOLOGY DEFINITION AND SOME 
EXAMPLES IN METRIC SPACES 

OBJECTIVES: 

 To introduce the notion of metric space. 
 To illustrate the concept of metric space by means of examples. 
 To obtain some related properties of metric spaces through examples. 
 To introduce the concept of metric space and illustrate it by means of examples. This 

is the context of lesson 1. 
 (i) To introduce the concepts of open sphere, and open set in metric space. 
 (ii) To obtain the properties of open spheres, open sets in metric spaces and using 

these to  characterize the open intervals in the space R of real numbers. These 
concepts are dealt in   Lesson 2 

 To introduce the concepts of closed sphere and closed sets in metric spaces and to 
derive their basic properties is the content of Lesson 3. 

 To introduce the concept of convergence, completeness, Cauchy sequences in metric 
spaces and prove Baire theorem regarding sequences of closed sets in metric spaces. 
These are established in Lesson 4 

 To introduce the concept of continuity and uniform continuity in metric spaces and to 
characterize continuity in terms of convergent sequences and open sets in metric 
spaces, which is the content of Lesson 5. 

 

STRUCTURE: 

1.1  Introduction 
1.2  Definition and some examples 
1.3  Fundamental Principles Relating to Metric Space 
1.4 Model Examination Questions  
1.5 Summary 
1.6 Technical Terms 
1.7 Self Assessment Questions 
1.8 Suggested Readings 
 

1.1 INTRODUCTION: 
 In this lesson the concept of a metric space, which is a generalization of the space R of a real 
number, with the distance function defined by means a modulus of a real number, is 
introduced and examples of metric spaces from various known spaces are given. Further 
some interesting examples about metric spaces are given 
The concept of distance is introduced into the set of real numbers through the notion of 
modules of a real of x, which is defined as  and =0 if, and only if , . This 

modulus function on the set R of real numbers satisfies  
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 (i)  and  

(ii)  and 

(iii)  for all  

The concept of the notions of limit, convergence, continuity, differentiation and integration 
are introduced through this distance function. 
The generation of modulus function and the distance function on the set of real numbers to 
are arbitatry set leads to the study of metric spaces. A set X with a metric d satisfying the 
properties akin to the distance function in the set of real numbers constitute metric spaces. In 
these metric spaces the concepts of limit, convergence, continuity are studied. 

1.2: Definition and some examples: 

        Definition   1.2.1: 

             Let  X be a non-empty set. A metric on X is a real function d of ordered pairs of 
elements of X which satisfies the following three conditions: 

(i) ; 

(ii)  (symmetry) 

(iii)  ( the triangle inequality).  

 
            The function d assigns to each pair (x,y) of elements of X a non- negative real number 
d(x,y) which by symmetry does not depend on the order of elements; d(x,y) is called the 
distance between x and y. A metric space consists of two objects: a non-empty set X and a 
metric d on X. The elements of X are called the points of the metric space (X,d). Usually we 
will be uniformal and denote the metric space (X,d) by X itself. However one should keep in 
mind, that metric space means non-empty set together with a metric. One can different 
metrics on the same set, which make  it into distinct metric spaces. The following example is 
rather trivial but shows that every non-empty set can be regarded and a metric space. 
 

1.2.2: Examples: 
           Let X be an arbitrary non-empty set  and defined by 
 

                           

            Then prove that d is metric on X. 
Solution:  Let X be an arbitrary non-empty set and d a function defined on X, such that d: 
X  defined by 
 

 
(i) We have  for all  Whether  

              Also  
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              This proves the first metric property. 

(ii)  Again  

and =1, for . 

In either case d(x,y)=d(y,x), for all  

This proves the second metric property. 
(iii) Further, if x=y, so that d(y,x) =0, we have 

 

                                             Since d(x,z) = 0 if x=z 

                                                         = 1 if x z 

                                              Similarly d(z,y) = 0 if z = y 

                                                                = 1 if z y 

                                               But in either case d(x,z)+d(z,y) is not less than zero. 

                                               Similarly when x y, 

                                                 

             This satisfies the fourth metric property. 

              Hence d defined on X is a metric. 

1.2.3: Examples : 

            Consider the real line R and the real function  defined R by: 

                              

                                  Then show that a metric d defined on R as d(x,y) = for all 

 is actually metric. 

Solution: Let R be the set of points on a real line and the real function  be defined on R by 

                                 

                    That is,  denotes the modulus of x, which is always positive. We know that the 

modulus function satisfies : 

(i)  
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(ii)  

(iii)  

            Consider the d-function on R defined by  

(a) Since  it follows that 

 

       That is,  

Also since it follows that 

 

     This proves the first metric property. 

(b) Since  it follows that  

                                                                        =  

That is d(x,y) = d(y,x) 
This proves the second metric property. 

(c) Further, since  it follows that 

                           

                                         

                                         

                                          

That is  

This proves the third metric property. 
Thus d is a metric on R. This is called the usual metric on R, or, the metric induced by 
the modulus. 
 

1.2.4: Examples : 
Show that the set  of complex numbers with d-function defined by 

                            is a metric space. 

Solution : Let  be the set of complex numbers with d- function defined by 
                              

Where  denotes the modules of z, which is always positive and is given by 

             , where z = x+iy. 

The given function  follows from the following properties of the modulus 

function  

(i)  

(ii)  and 

(iii)  

        We now show that(c,d) is a metric space. 
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(a) From (i) it follows that 
            

And  

This proves the first metric property 
(b) From (ii) it follows that 

=  

                =  

That is  

This proves the second metric property. 
(c) From (iii), we have 

 

 

 
That is  

This proves that third metric property. 
Thus d is a metric on  and hence ( ,d) is a metric space. 

 

1.2.5: Example: 
           Let f be a real function defined on the closed unit interval [0,1]. We say that f is 
bounded function if there is a real number k such that. 
                                        for every [0,1]. 

Let X denote the set of all bounded continuous function defined on the closed unit interval 
[0,1] on X we define addition ‘+’ by 

 
The zero function ‘0’ is defined by 
0(x)=0, , 

 Is evidently bounded and continuous. So . 

The negative –f of  is defined by 

(-f) (x) = -f(x),  

One can easily see that  

Since each , is bounded and continuous on [0,1], it is Riemann integrable over[0,1]. 

We define the norm  of a function  by 

. 

Evidently  

We define the d- function on X by : 

   d(f,g)=  

we see that d is metric on X. 

(a)d(f,g)=  

 since  

Also d(f,g) = 0  
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(b) d(f,g) =  

                                    =  

                                         =  

                                          =  

(c)For f,g,h . 

       

                      

                       

                       

                         = d(f,h)+d(h,g). 

So ‘d’ is metric on X and hence (X,d) is a metric space. 

1.2.6: Example: 

     Let d be metric on a non-empty set X. Show that the function d1 defined by 

                         

    For a,b , is also a metric on X. 

Solution : Let d be a metric on a non empty set X. 

Let  be a function defined by 

                         ,for a,b  

We now prove that d1 is also a metric on X 

(a) For a,b , 

                         

Also, d1(a,b) = 0  
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This shows that d1 satisfies the first axiom of metric 

(b) For a,b  

 (since d is metric on X) 

                                

That is d1(a,b) = d1(b,a). 
 
This shows that d1 satisfies the second axiom of a metric space. 

(c) Let a,b,c . Then 

 
And 

 
 
Since d is metric on X , we have 

 

So  

(since d-value is positive). 

                            

                            

That is  

This proves that d1 satisfies the third axiom of metric. 

Thus d1 is also a metric on X. 

1.2.7: Remark: 

After defining a metric d1 on X with respect to the metric d on X by 

 
One ear inductively define a metric dn on X by 
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           For every positive integer n. so, if X is a metric space, than it can be made into a metric 
space in an infinitely many ways. 

1.2.8: Remark : 

If d is a metric on X, Then the metric d1 defined by  is such that d1(a,b) < 

d(a,b). So, the process of obtaining the metrics dn, 
From d is a distance decreasing process. 

1.3 : Fundamental Principles relating to metric spaces: 

1.3.1: Definition : 

Let (X,d) be a metric space and let Y be are arbitrary non-empty subset of X. If the function d 
is considered to be defined only for the points of Y provided (Y,d) is evidently itself a metric 
space. 

Then, Y, with d restricted in this way, is called a subspace of (X,d). 

1.3.2: Example: 

(i)The closed unit interval [0,1] is a subspace of the real line, as is the set consisting of all the 
rational points. 
(ii)The unit circle, the closed unit disc, and the open unit disc are subspace of the complex 
plane. 
(iii)The real line is itself is a subspace of the complex plane. 

1.3.3: Definition: 
An extended real number system is the real number system R together with the symbols -

 and for every real number X.  

1.3.4 : Definition: 

             Let A be a non empty subset of R of real numbers. An element X in R is called a 
lower bound of A, if  for each  and lower bound of A is called a greatest lower 
bound, or, infimum of A if it is greater than or equal to every lower bound of A and simply it 
is written as Inf A. 

            In other words, if A is non-empty and has a lower bound, then the greatest lower 
bound or infimum is the largest real number x such that  for every a in A. 

            If A is non-empty and has no lower bound, we put inf A =  and if A is empty, we 

put Inf A =  

1.3.5 : Definition: 

            Let A be non-empty set of R of real numbers. The least upper bound, or, supremum of 
the non-empty set A is smallest upper bound of  A, simply it is written as Sup A. 

            If A is a non-empty set of real numbers which has no upper bound, and therefore no 
least upper bound in R, we express this by writing. 
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                                    Sup A =  
          And if A is the empty subset of R, we put 
                                     Sup A =  

1.3.6 : Remark : 

(i) The first advantage of the extended real number system is that it enables sup A and inf A 
for subsets A of the real line with out any restrictions whatever on the nature of A. 

(ii) The second advantage is the availability of the symbols  and  which lead to a 

reasonable extension of the concept of an interval on the real line. 

1.3.7 : Definition : 

            Let a and b be any two real numbers such that a b. Then the closed interval from a to 
b is the subset of the real line R defined by 
             [a , b] =  
            If b is real number and a is an extended real number such that a<b, then the open 
closed interval from a to b is 
            (a , b] =   

            So(- ] is also an open closed interval. 
           If a is real number and b is an extended real number such that a<b, then the closed 
open interval from a to b is 
            [a , b) =  

           So [a , ) is also a closed open interval. 
          If a and b are extended real numbers such that a<b, Then the open interval from a to b 
is 
              (a , b) =  

This adds to the previously defined open intervals those of the form(  where b is 

real,  where a is real and  thought our study, the term interval will always 
signify one of the four types (a , b), 

1.3.8 :Definition :  

Let X be a metric space with metric d, and let A be a subset of X. If x is a point of X, then the 
distance from x to A is defined by ; 

 
that is, the distance from x to a is the greatest lower bound of the distances from x to points of 
A. 

 1.3.9 :Definition : 
 Let X be a metric space with metric d, and let A be a subset of X. The diameter of the set A 
is defined by  
                           
        The diameter of A is thus the least upper bound of the distances between pair of its 
points. A is said to have finite diameter or infinite diameter according as d(A) is a real 
number, or ,    

The empty set has infinite diameter, since d    
A bounded set is one whose diameter is finite.  
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1.3.10 :Definition : 

 A mapping of a non empty set into a metric space is called a bounded mapping if its range is 
bounded set. 
 Excercise : 
(i)Let X be a non-empty set and let d be a real function of ordered pairs of elements of X, 
which satisfies the conditions:  
             (i)d(x,y)=0 x=y   

            (ii)d(x,y)  d(x, z)+d(y, z).   

           show that d is a metric on X 
(ii)Let X be the set of bounded continuous functions defined on [0,1]. Define another on 
X by : 
      
Which we briefly write is 
      . 
Next define the d-function on X by 

       

Show that d is a metric on X. 
(iii)Let x1,x2,x3,x4,………..,xn be a finite class of metric spaces with metric d1,d2,d3,……dn 
respectively and let 
          

Show that each of the following functions d and  are metrics on X : 

         (i)d((  

         (ii)  

1.4  MODEL EXAMINATION QUESTIONS: 

(i)Define a metric space and illustrate it by means of an example. 

(ii)Let X be an arbitrary non-empty set, show that the function d defined by 

                      

                  For all , is a metric on X. 

(iii)Show that the set R of real numbers with d function defined by 

         for all  is a metric space. 

(iv)Show that the set of  complex numbers with d function defined by 

                for all  

(v)Let X be a metric space with metric d. show that d1, defined by 
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                  is also a metric on X. 

1.5  SUMMARY: 

A metric space is a set where a distance function is defined, allowing you to measure the 
distance between any two elements within that set, with the key property that this distance 
function must satisfy specific axioms like non-negativity, symmetry, and the triangle 
inequality essentially. It formalizes the concept of distance in a general setting.  

1.6  TECHNICAL TERMS: 

 Metric Space: A set X together with a function d: X  X  R that satisfies the properties 
of a metric. 

 Discrete Metric Space: A metric space where the distance between any two distinct 
points 

 Compact Metric Space: A metric space that is compact, meaning that every sequence has 
a convergent subsequence. 

 Complete Metric Space: A metric space where every Cauchy Sequence Convergence. 
 
1.7  SELF ASSESSMENT QUESTIONS: 
 

1.What is meant by metric space? 
Ans: A metric space is defined as a non-empty set with a distance function connecting two 
metric points. 
 
2.Given an example of metric space? 
Ans: The well-known example of metric space is the set R of all real numbers with p(x, y) = | 
x – y |. 
 
3.What is the triangle inequality property for the metric? 
Ans: The triangle inequality property for the metric is given by: p(x, y) ≤ p(x, z) + p(z, y). 
 
4.Explain the difference between the metric and the norm. 
Ans: A metric measures the distance between two places in space, whereas a norm measures 
the length of a single vector. A metric can be defined on any set, while a norm can only be 
specified on a vector space. 

1.9 SUGGESTED READINGS: 
 

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book 
Company, New York International student edition. 

 

Dr. M. Gnaneswara Reddy 
 



LESSON-2 

OPEN SETS AND CLOSED SETS IN METRIC 
SPACES    

 
OBJECTIVES : 

 To introduce the concepts of open spheres, interior point of set and open sets in metric   
            spaces. 
 To illustrate the above concepts by means of suitable examples. 
 To show that every open sphere ia an open set in a metric space. 
 To obtain basic properties of open sets in metric space. 
 To establish that every open set in a metric space ia a union of open spheres. 
 To prove that every open set in the space R of real numbers is a countable union of 

disjoint open spheres.  
 To introduce the notion of interior of a subset of a metric space and relate it to the 

notion of open sets.  
 To introduce the concept of limit point of a set in a metric space. 
 The notions of limit point, closed sphere and closed sets are illustrated by means of 

examples. 
 To prove that every closed sphere is a closed set in a metric space. 
 To obtain the basic properties of closed sets. 

STRUCTURE: 

2.1  Introduction 
2.2  Open sets and Metric Spaces 
2.3  Closed sets and Metric Spaces 
2.4  Exercise 
2.5  Model Examination Questions  
2.6  Summary 
2.7  Technical Terms 
2.8  Self Assessment Questions 
2.9  Suggested Readings 
 

2.1 INTRODUCTION : 
 

      The notions of the open sphere, open set limit point of a set, closed sphere and closed set 
are introduced in a metric space and its basic properties are obtained in this lesson. The open 
sets in metric space are charecterised by means of open spheres. The complementary property 
of open sets and closed sets is established. Further the open sets in the space R of real 
numbers are also charecterised through open intervals. 

2.2 OPEN SETS AND METRIC SPACES: 

2.2.1 : Definition : 
             Let X be a metric space with metric d. Let x0 be a point of X and let r be a positive 
real number. Then open sphere Sr (x0 ) with center x0 and radius r is the subset of X defined 
by 
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2.2.1 : Remark : 
Since d(x,x0 ) = 0 < r,x0 = Sr(x0)  and thus an open sphere is always non-empty set, and it 
contains its center x0. 

2.2.2 : Example : 
            In the metric space R of real numbers with respect to the usual metric, the open 
sphere with center X0 radius r is given by 

                      

                            

                                         , 

                   which is the open interval (x0-r,x0+r). 

2.2.3 Example : 
              For any x0 in the metric space (x, d), where the metric d is defined by 

                        

Then S1(x0)=1={x0} and Sr(x0)=X, for every r > 1. 

Solution : 

               The open sphere   so the open sphere is 
the singleton set {x0}and thus it contains only x0. 

                         Suppose r >1. Consider sr(x0) clearly sr(x0)  

Let any  if x = x0 then d(x,x0) = d(x0,x) = 0 . If  , then d(x,x0) = 1  r, so 

that. That is . That is  

                  From (1) and(2)  

2.2.4 : Definition : 
             Let G be a subset of a metric space. A point x of G is called interior point of G if 
there exist an open sphere  such that   
The set of all interior points point of G is called the interior of G and it is denoted by Int(G). 

2.2.5 : Definition : 

            A subset G of a metric space is said to be an open set if every point of G is an interior 
point of G. That is, G is an open set , if for every x in G, there exist an open sphere sr(x) such 
that . 

2.2.6 : Example : 
              The open interval (a ,b) of the real line R is an open set. 
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Solution : 

    Let  choose r such that 0<r< min{x-a, x-b}. 

    Then sr(x) = (x-r, x+r)  (a,b). 
     So every point of  (a,b) is an interior point of (a,b) and thus open interval (a,b) is an open 
set in R. 

2.2.7 : Example : The subset [0,1) is not an open set in R. 

Solution : For any real number r>0 (however small r may be ), the open sphere sr(0) = (-r, r) 
contains infinitely many points of (-r, 0), which do not belong to [0, 1], so that sr(0) . 

So 0  [0,1) is not an interior point of  [0, 1) and thus [0,1) is not an openset in R. 

2.2.8 : Theorem : 
In any metric space X, the empty set  , and the full space X are open sets. 

Proof : Since  has no points, the fact that every point of  is an interior point of  is 

trivially satisfied. Coming to the full space X, if  and sr(x) is are open sphere in X, 

center x and radius r>0, then sr(x) is trivially a subset of full space X, so that sr(x)  X. Thus x 
is an interior point of  X and X is open. 

2.2.9 : Remark : 

In Example 2.3.7, we have seen that [0, 1) is not open as a subset of the real line R. But if we 
consider [0, 1) as a metric space X in its own right, [as a subspace of the real line ], then [0, 
1) is open itself. Thus a set is open, or, not open only with respect to a specific metric space 
containing it, never on its own. 

2.2.10 : Theorem : 
In any metric space X, each open sphere is an open set. 

Proof : Let (x,d) be metric space and let , consider the open sphere sr(x0). To show 
that sr(x0) is open in (X,d), we have to show that every point of sr(x0) is an interior point of 
sr(x0). 

                   To see this, let  

Choose  such that  Then for every  

We have d(x,y) <  and thus, 

        d(x0,y)  d(x0,x)+d(x,y)  
   
                    < d(x0,x)+  
 
                    = d(x0,x)+r-d(x,x0) 
 
                    = r 
    That is d(x0,y) < r and  
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That is,   and thus x is an interior point of  So  is an open set. The 

following theorem characterizes open sets in terms of open spheres. 

2.2.11 : Theorem : 
        Let (X, d) be a metric space. A subset G of x is open if, and only if, it is a union of open 
spheres. 

Proof :  Suppose that G is open. then every point of G is an interior point of G. So, for every 
there exists an open sphere  such that    

       Let x,g be the collection of all such open sphere. 

Then, . 

Further  so that G =  That is G =  

Conversely, assume that G is a union of a class S of open spheres. We show that G is open.  
       If S is empty. Then G is also empty and hence it is open. 
 Suppose S is non-empty. then G is also non-empty. Let x  G then G being a union of sets in 

S,  for some open sphere  Since every open sphere is an open set. 

 implies x is an interior point of  so, there exists an open sphere  such 

that .Then 

 

             So, x is also an interior point of G and thus G is an open set.  
The next theorem gives the fundamental properties of open sets in metric spaces. 

2.2.12 : Theorem : 

              Let X be a metric space. Then 
(i) any union of open sets in X is open ; and 
(ii) any finite intersection of open sets in X is open. 

Proof : Let X be metric space. 

            (i)Let {  be any class of open sets in X and G =  

                We shall show that G is open in X. 
                To see this let  

                 Then , for some  Since  is open in X, there exists an open sphere Sr(x) 

such that Sr(x) . But  so sr(x)  G. 

    That is, x is an interior point of G and thus G is open. 

         (ii)Let be any finite class of open sets in X and let G =  

             To show that G is open in X, Let  

             Then , for every i. 
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             Since for each i , 1 , Gi is open, there exists open spheres  

such that  

              Let r = min {r1,r2,……..rn}.Then sr(x)  (since they have 

common center and ). 

              So  

    Thus x is an interior point of G and hence G is open. 

2.2.13 : Remark : 

               The condition of “finite ness” in the above theorem is essential. To see this, 

consider the infinite class  of open intervals on the real line. 

                Here each  is open. But ={0} and {0} is not an open subset 

in R, since every open sphere (-r,r), r>0 contains infinitely many points not in {0}. 
               The following theorem gives the charecterstic property of an open set in the set R of 
real numbers. 

2.2.14 : Theorem : 
                Every non-empty open set of the set R of real numbers is the union of a countable 
disjoint class of open intervals. 

Proof : step 1 : 

             Let G be an open set in R and Let . Then there is a  such that 

. So, There is a y>x(that is ,any y such that x<y<x+  has this property) 

such that Let b = sup{y/ }. 

             Similarly, there is a z<x such that (z , x) . (Any z, such that  has 

this property ).Let a = inf{z/(z , x) }. Then a<x<b 

              So Ix = (a , b), is an open interval containing x. 

Step -2 : 

         We shall Ix  G. To see this, Let  , such that x<w<b. Since b =sup  , 

there is real number y such that w<y and  

          More over .For if , then G is open set implies there is an  such that 

 when  This contradicts the supremum property of b. so 

. 

           Similarly if w is such that a<w<x, by using the fact that a = inf  one can 

show that and  Thus  
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Step -3 : 

          Consider the collection of open intervals . For every  Ix = (a , b) and 

a<x<b, where a = inf  

                       b =  sup  

               so,  and . 

     Further, each , so that . 

           Hence G = . 

Step -4 : we now show that any two different intervals in  are either disjoint, or, 
identical. 

           Let (a, b) and (c, d) be any two different intervals in  
           If they are disjoint then there is nothing to prove. 
           otherwise these intervals have a common point, say, e. 
           That is and . 

           Then  imply that c<b. 
            Also a<d 

In step 2, we have seen that c does not belong to G. Since G =  and (a , b) = 

 it follows that  so we must have . 

Again a does not belong to G (by step 2), and (c , d) so a does not belong to (c , d), so 

that  
               Hence a=c. 
Similarly, we can show that b=d, and thus (a,b) = (c,d).  
Thus two different intervals in the collection  are either disjoint or identical. 

Step -5 : We shall now show that the collection  is a countable collection. 
     Consider any Ix. Ix is an open interval. We know that any open interval contains a rational 
number rx(by Archemedian property). 

      If rx and ry are rational numbers in the disjoint intervals Ix and Iy, then  consider 

the set {rx} is rational number in Then {rx}is a subset of the set of rational 

numbers. Since the set of rational numbers is countable and hence  is countable. 

         These show that G = which is union of collection  of disjoint open 
interval Ix. 

2.2.15 : Definition : (Interior of a set) 

              Let X be a metric space. The set of all interior points of A is called the interior of A 
and it is denoted by Int(A).  
             The basic properties of interiors are the following: 
(i) Int (A) is an open set of A which contains every open subset of A. 
(ii)  A is open if, and only if, A=Int(A).  
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(iii)  Int(A) equals the union of all open subsets of A.  
            In the following example we prove (ii). 

2.2.16 : Example : 
In a metric space X, a subset A of X is open if, and only if A=Int(A). 

 Solution : Let X be a metric space and let A be a subset of X. 

 First, Let us assume that A is an open set implies that A is a neighbourhood of each of its 
points implies that every point of A is an interior point of A .Implies that 
A   Also each interior point of A belongs to A. Implies that 

   

From (1) and (2), we have A=Int(A).  
              Conversly, Let us assume that A=Int (A) implies that A is an open set, since Int (A) 
is an open set.  

Hence A is an open set if, and only if, A=Int(A). 

2.2.17 : Example : 
                  Let X be a metric space, and show that any two distinct point of X can be 
saperated by open spheres. 
Solution : Let X be metric space and let  

Put d(x, y)=d and choose a real number r such that  

Consider the open sphere sr(x) and sr(y). 

For any  we have  

Suppose  then d(x,z) <  

So  

This is a contradiction to the fact that d(x, y)=d. so  

Similarly, one can show that for any  and  

Hence, = . That is, sr(x) and sr(y) are open spheres centered at x and y such 

that =  

2.3: CLOSED SETS AND METRIC SPACE: 

2.3.1 : Definition : 
                 Let X be a metric space with metric ‘d’ and let A  X. A point x of X is called a 
limit point of A if each open sphere centered on x contains at least one point of a different 
from x. 

2.3.2 : Example : 

            For the set A =  in the real line R,0 is a limit point. 
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Solution : 

        To see this Then  If we choose a positive integer N such that 

 (or,  then  and also  (since .so ‘0’ is a limit 

point of A. 

2.3.3 : Remark : 
              Observe that no other point of A is a limit point of A. That is, A has only one limit 
point 0 and this does not belong to A. This example also shows that a limit point of a set 
need not be in the set. 

2.3.4 : Example : 
The closed - open interval [0, 1) has 0 and 1 as limit points. Further every real number x such 
that 0<x<1 is also a limit point of this set. Observe that the limit point 1 does not belong to 
[0,1). 

(proof is similar to that of example 2.3.2). 

2.3.5 : Example : 
            The set of integers has no limit points. 

 Solution : Let n be any integers. For any real number 0<r<1,the open sphere (n-r, n+r) does 
not contain any integer except n. So n is not a limit point of the set 
{0,  of integers. This shows that the set of integers has no limit 
points. 

2.3.6 : Example : 
          For the set of rational numbers every real number is a limit point. 

Solution : 

             Let Q and R respectively denote the set of rational numbers and the set of real 
numbers.  
Let r be any real number and  be any real number, however small. Then the open sphere 

(  contains infinitely many rational numbers since there are infinitely many 
rational numbers between two distinct real numbers. so, r is a limit point of the set Q of 
rational numbers. 

2.3.7 : Definition : 
             A subset F of the metric space X is called a closed set, if it contains each of its limit 
points. 

2.3.8 : Example : 
                The closed-open interval [0,1) is not a closed set in the set of real numbers, since it 
does not contain its limit point1, even though it contains all other limit points. (see example 
2.4.4) 

2.3.9 : Example : 
             The closed interval [0,1] is a closed subset of the set of real numbers, since it 
contains all its limit points including 0 and 1. 
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2.3.10 : Theorem : 

             In any metric spaces X, the empty set  and the full space X are closed sets. 

Proof: The empty set   has no points and hence it has no limit points, so that the set of the 
limit points of the empty set  is the empty set . Since trivially,  is closed  

            The fully space X contains all the points of X. So it is automatically contains all its 
limit points and thus X is closed. 

2.3.11 : Theorem : 
                Let X be a metric space. A subset F of X is closed if, and only if, its compliment F1 
in X is open. 

Proof : : Let F be a closed subset of a metric space X, and let F1 be its compliment in X. If F1 
is empty, then F1 is trivially open. 

So, let F1 be non-empty and let  We shall show that x is an interior point of F1, So that 

F1 is open. Now xF1 implies that x F. Since F is closed and x F, it follows x is not a limit 
point of F. So, there exists an open sphere, say, sr(x) such that sr(y) does not contain any point 
of F, or, sr(x)  F=. This means that sr(x) showing that x is an interior point of F1and 
thus F1 is open. 

         On the otherhand, let F1 be an open set in X. To show that F is closed in X, it is enough 
to show that F contains all its limit points. To see this ,let x be a limit point of  F. If possible, 
let  Then . Since F1 is open,  implies that x is an interior point F1. So, 

there exists an open sphere Sr(x), such that Sr(x)  F1. Then Sr(x)  F =  

                     That is, there is an open sphere sr(x), centered x, which does not contain any 
point of F. This shows that x is not a limit of F. This is contradiction to the .So, F is closed. 
assumption that x is a limit point of F. So, our assumption that x does not belong to F is 
wrong and thus x F. So, F is closed. 

               Just as the notion of open sphere plays a key role in the charecterisation of open sets 
in metric spaces, the notion of closed sphere plays a similar role in the study of closed sets in 
metric spaces. 

2.3.12 : Definition : 
                 Let (X,d) be a metric space, r>0 a real number and The set 

 is called the closed sphere center x0 and radius r in X. 

Analogous to the theorem 2.2.10 for open spheres, we have the following theorem for closed 
spheres. 

2.3.13 : Theorem : 
             In any metric space, each closed sphere is a closed set. 

Proof :Let sr[x0] be a closed sphere in X. To show that sr[x0] is closed. It suffices to prove 
that its compliments sr[x0]

1 is open. 

            If sr[x0]
1 is empty, then trivially it is open. So, let sr[x0]

1 be non-empty  and let 
. Then d(x,x0)>r. Let r1 = d(x,x0)-r. clearly r1>0.Consider the open sphere . 
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We shall show that  so that x is an interior point of sr[x0]
1 and thus it is 

open in X. 

         Let , so that d(x,y)<r1. 

         Now d(x0,x)  d(x0,y)+d(x,y) 

          So, d(x0,y)  d(x0,x)-d(x,y) 

                            >d(x0,x) – r1, (Since – d(x,y)-r1) 
                            = d(x0,x)-[d(x,x0)-r] = r 

So so that  That is  and x is an interior point 

. This shows that  open, so that  is closed. 

            The following theorem gives the main properties of closed sets. 

2.3.14 : Theorem :Let X be metric space. Then 
                              (i)any intersection of  closed sets in X is closed. 
                              (ii)Union of finite number of closed sets in X is closed. 

Proof : Let X be a metric space. 

(i)Let  be an arbitrary collection of closed subsets of X and let C =  
To show that C is closed set in X, it is sufficient to prove that C1 is open in X. 
From the De Morgan Laws,  

          Since each  is closed in X, it follows that each  is open in X. But arbitrary union of 

open sets is open. So that  is open. That is,  is open and thus  is closed. 

That is C =  is closed. 

(ii)Let {Ci/1,2,3,……,n} be a finite collection of closed sets in X and let C= . 

            Again from the Demorgan laws,  Since each Ci is closed in X, it 

follows that each is open in X. But the intersection of finite number of open sets in X is 

open X, so that is open in X. That is is open in X, or, is closed in X. 

Thus C= is closed in X. 

2.3.15 : Definition : 

                    Let X be a metric space and let A be a subset of X. The closures of A is the 
union of A and the set of all its limit points and it is denoted by .The main facts about 
closures are the following. 

(i) A is a closed super set of A, which is contained in every closed super set of A. 
      (ii)        A is closed if, and only if, A= . 
     (iii)       A equals the intersection of all closed supersets of A. In the following example 
we   

prove (ii). 

2.3.16 : Example : Let X be a metric space. A subset A of X is closed if, and only if A=  

Proof : Let X be a metric space. 
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        Let D(A) be the set of  limit points of A. Then by the definition of closure of A, 
                                                

        Suppose A is closed. Then A contains all its limit points, that is D(A)  A. So 

. 

         On the other hand let  Then A=  so that D(A)  A, or, A contains all 
its limit points. So A is closed. 
Hence A is subset A of X is closed if, and only if, A=  
        Another concept that is related to closed sets in a metric space is the boundary of a set 
in a metric space. 

2.3.17 : Definition : 
                Let X be a metric space and A a subset of X. A point in X is called a boundary 
point of A if each open sphere centered on the point intersects both A and A1 .  
                The boundary of A is the set of all its boundary points one can prove easily the 
following properties of the boundary of a set A in a metric space X. 

(i) The boundary of A equals to  
(ii) The boundary of A is closed set. 
(iii) A is closed if, and only if, it contains its boundary. 
 
2.3.18 : Example : 
             Let X be a metric space and let A be a sunset of X. If x is a limit point of A, show 

that each open sphere centered on x contains an infinite number of distinct points of A. 
 
Solution : Let A be a subset of a metric space X and let x be a limit point of A. Suppose that 

there is an open sphere Sr(x) which contains only a finite number of points of A, say 
x1,x2,x3,……xn. 
  For 1  let ri= d(X,Xi) and let r0 be any real number such that 0 < r0 < min {r1,r2,r3,.......rn}. 
               Clearly the open sphere or (x) does not contain any point of A other that x. This 

contradicts the fact that x is a limit point of A. So, sr(x) must contain an infinite number of 
distinct points of A. 

2.3.19 :Example : Show that the finite subset of a metric space is closed. 

Solution :Let A be a finite subset of a metric space X and let x  X.  
                    If x is a limit point of A, then every neighborhood of x must contain an infinitely 
many distinct points of A. This is not possible, since A is finite. So x is not a limit point of A. 
This shows that the set of limit points of A. This shows that the set of limit points of A in X 
is the empty set .Since   A trivially, A is closed. 

2.4  EXERCISES : 

1. Let X be a metric space and A be a subset of X. Prove that the closure  of A is a closed 
superset of A which is contained in every closed superset of A.  
2. Let X be a metric space and A be a subset of X. Prove that the closure  equals the 
intersection of all closed supersets of A.  
3. Show that a subset of a metric space is bounded if and only if , it is nonempty and is 
contained is some closed sphere.  
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4. Prove the following properties on the boundary of a subset A of a metric space X: 
         (i) the boundary of A equals   
         (ii) The boundary of A is a closed set.  
         (iii) A is closed if, and only if, it contains its boundary. 
5. Let X be a metric space. If {x} is a subset of X consisting of a single point, show that its 
compliment {x}1 is open. 
 6. Let X be a metric space. If A is any finite subset of X, show that A1 is open.  
7. Let X be a metric space and Sr{x}, the open sphere in X with centre x and radius r. Let A 
be a subset of X with diameter less than r which intersects Sr(x). Prove that A is contained 
S2r(x).  
8. Let X be a metric space. Show that every subset of X is open if, and only if, each subset of 
X which consists of single point is open. 
 9. Let A and B be two subsets of a metric space X. 
Prove the following: 
(i) Int(A)  Int(B)  Int (A B) 

(ii) Int(A)  Int(B) = Int(A B) 

 
2.5 MODEL EXAMINATION QUESTIONS: 
 

1. Define an open sphere. Show that the each open sphere is an open space in a metric 
space X  and the 

2. Define an open set is a metric space X. Show that the empty set full space X are open 
sets in  X. 

3. Show that a subset G of a metric space X is open if, and only, if it is a union of open 
spheres.  

4. Let X be a metric space. Show that any two distinct points of X can be seperated by 
open  

    spheres. 
5. Show that the subset [0,1) is not an open set in the set of real numbers R.  
6. Let X be a metric space. Prove that 
    (i) Any union of open sets is X is open, and  
    (ii) Any finite intersection of open sets is X is open. 
7. Prove that every non-empty open set on the real line is the union of countable disjoint 

class   
    of open intervals.  
8. Define(i) an interior point of a subset A of a metric space and (ii) the interior Int(A) of a    
    subset A of X. Prove that A is open if, and only if ,A = Int(A). 

 
2.6  SUMMARY: 
 

An open set is a set where every point within it has a small neighborhood entirely contained 
within the set(meaning you can move a little bit around any point in the set and still stay 
inside0,while a closed set includes all its boundary points, essentially meaning any point that 
is close to the set must also be part of the set. 
 

2.7  TECHNICAL TERMS:  
 

 Boundary Points: The key difference lies in whether the set includes its boundary 
points-open sets do not, while closed sets do 

 Complement: A set is closed if and only if its complement is open. 
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 Open set: The open interval(0,1) on the real number line, which includes all numbers 
between 0 and 1but not 0 and 1 themselves. 

 Closed set: The closed interval on the real number line, which includes all numbers 
between 0 and 1, including 0 and 1. 

 
2.8  SELF ASSESSMENT QUESTION: 
 
1. In a metric space X, a subset A of X is open if, and only if A=Int(A). 

 Solution : Let X be a metric space and let A be a subset of X. 

 First, Let us assume that A is an open set implies that A is a neighbourhood of each of its 
points implies that every point of A is an interior point of A .Implies that 
A   Also each interior point of A belongs to A. Implies that 

   

From (1) and (2), we have A=Int(A).  
              Conversly, Let us assume that A=Int (A) implies that A is an open set, since Int (A) 
is an open set.  

Hence A is an open set if, and only if, A=Int(A). 

2. The set of integers has no limit points. 

 Solution : Let n be any integers. For any real number 0<r<1,the open sphere (n-r, n+r) does 
not contain any integer except n. So n is not a limit point of the set 
{0,  of integers. This shows that the set of integers has no limit 
points. 

3. The subset [0,1) is not an open set in R. 

Solution : For any real number r>0 (however small r may be ), the open sphere sr(0) = (-r, r) 
contains infinitely many points of (-r, 0), which do not belong to [0, 1], so that sr(0) . 

So 0  [0,1) is not an interior point of  [0, 1) and thus [0,1) is not an openset in R. 

2.9  SUGGESTED READINGS: 

1.  Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book 
Company, New York International student edition. 

Dr. M. Gnaneswara Reddy 
 
 
 



 

LESSON-3 

CONVERGENCE AND COMPLETENESS IN 
METRIC SPACES - BAIRE’S THEOREM 

OBJECTIVES : 

 To introduce the concept of convergent sequence in metric spaces and to give its 
equivalent forms through open spheres and limit of a sequence.  

 To introduce the concepts completeness and Cauchy sequences and illustrate them 
with suitable examples. 

 To establish that every convergent sequence is Cauchy sequence but not vice-versa, 
by means of an example. 

 To study the notions of limit and limit points of a sequence is a metric space and 
obtain the condition under which they are the same.  

 To find a necessary and sufficient condition under which a subspace Y of a complete 
metric space X is complete.  

 To prove Cantor’s Intersection theorem on a decreasing sequence of subsets of metric 
spaces.  

 To prove the two versions of Baire’s Theorem. 
 
STRUCTURE: 
 
3.1  Introduction 
3.2  Convergence in Metric Space 
3.3  Completeness in Metric Space 
3.4  Exercise 
3.5  Model Examination Question 
3.6  Summary 
3.7  Technical Terms 
3.8  Suggested Readings 
 

3.1 INTRODUCTION: 

         This lesson deals with the notions of the convergence, completeness and baire’s 
theorems. The concept of limit and convergent sequences in the real number system which 
are studied in the real analysis can be successfully introduced in to metric spaces. The results 
resulting to limit of a sequence and convergence throw a greater insight to the corresponding 
notions on real number system and they complement each other. The Cantor’s intersection 
Theorem and Baire’s theorems relating sequences of sets in a metric space are also 
established in this lesson. 
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3.2  CONVERGENCE IN METRIC SPACE : 
 

3.2.1 Definition : Let X be a metric space and Let {xn}= {x1,x2,x3,……xn,.......}be a 
sequence in X. We say that {xn} is convergent in X, if there is a point x in X such that for 
each , there exists a positive integer n0 such that 

         d(xn,x) < , for all n  n0. 

         The points xn which satisfy the condition d(xn,x) <  lie in the open sphere  

centre x and radius , the above definition can equivalently be stated as: A sequence {xn} in 

a metric space X is convergent if, for each open sphere  ,there exists a positive integer 

n0 such that xn for all n  n0. 

        Since >0 is arbitrary small, the statement that {xn } is convergent in X equally well 

defined as follows: the {xn } is convergent in X if, there exists a point xX such 
that.d(xn,x)→0 as n→∞.Symbolically, we write this be xn→x as n→∞,and verbally express it 
by saying that xn approaches x, or, xn converges to x as n→∞ .The point x is called the limit 
of the sequence {xn } and we sometimes xn→x. 

, or simply lim xn=x 

                 The statements xn→x and lim xn=x mean exactly the same, namely that {xn} is a 
convergent sequence with limit x. 

3.2.2 : Theorem : 
             The limit of a convergent sequence in a metric space is unique. 

Proof : Suppose x and y be two limits of a convergent sequence {xn }.Then, given >0 and 

hence   , there exists positive integers n1 and n2 such that and 

                    d(xn,x) < , for all n  n1………(1) 

                    d(xn,y) < , for all n  n2……….(2) 

Let n0 = max{n1,n2}. Then (1) and (2) hold for all n  n0. 

Hence for all n  n0. 

                              d(x,y)  d(xn,x)+d(xn ,y) 

                                   <  +  

                                   = . 

Since  is arbitrary small, this gives x = y. 

3.2.3. Theorem : 

             If the sequence {xn} is convergent, the given , there exists a positive integer n0 

such that d(xm,xn) < , for all m,n . 

 
Proof : Suppose that the sequence {xn} is convergent and convergence to x in X. Then given 

 (and hence ,there exists a positive integer n0 such that 
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                       d(xn,x) <  , for all n  n0……..(1) 

So (1) holds for all m,n  n0. Hence 

                 d(xm,xn)  d(xm,x)+d(x,xn) 

                               <  

                               =  for all m,n  n0. 

3.3 COMPLETENESS IN METRIC SPACES : 

3.3.1  Definition : 
           A sequence {xn } in a metric space (X,d) is called a Cauchy sequence, if given >0, 
there exists a positive integer n0 such that d(xm,xn) < , for all m,n  n0. 
           This means that all the terms of the sequence except finite number of them ( possible 
after ) lie very close to each other. 

3.3.2 Remark : 
               Theorem 3.3.3 shows that every convergent sequence in a metric space is a Cauchy 
sequence. However the converse need not be true. There do exist Cauchy sequences in a 
metric space (X, d), which are not convergent in X. The following example illustrates this. 

3.3.3  Example : 
            An example of a Cauchy sequence which is not convergent. 

Solution : 
Consider the metric space 
X = (0,1] = {x/x is a real number such that 0 < x } 

(X is a metric space with respect to the metric d defined by d(x, y)=  

 Consider the sequence  in x. 

           Let  Choose a positive integer n0 such that , where  denotes the 

positive  integer part of x, or, the largest integer  x. Then , so that . 

 Then for all m,n  n0, we have . 

  Hence for all m,n  n0, 

         

                         (since m , n  0) 

 
     So  is a Cauchy sequence in x. But the limit of the sequence that is  

, and 0 . 

Hence the sequence is not convergent in X = [0,1]. 
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3.3.4 : Definition : 
                A metric space (X, d) is said to be a complete metric space, if every Cauchy 
sequence in X converges in X. 

3.3.5 : Example : From the example 3.4.3, if follows that the metric space (X,d) X, is not a 

where X =[0,1] and d is given by d(x,y) = |x–y|, for all x,y X, is not a complete metric 
space. 

 3.3.6 : Example : 
              Using the nested intervals theorem in the space R of real numbers, it is well 
established that every Cauchy sequence in R is convergent in R. So R is a complete metric 
space. 
         Using the fact that R is a complete metric space the metric space C of ,complex 

numbers under the Metric d is defined by d(z1,z2)=   for all z1,z2C is also a 

complete metric space. 

Limits and Limit points of sequences in Metric spaces : 
 
            The terms Limit and Limit point are often a source of confusion. On the real line R, 
consider the constant sequence {1, 1, .........} is convergent with limit 1. But treating it as a 
set, it is the singleton set {1} and hence it has no Limit points. This shows that a sequence 
may have a limit point but cannot have a limit. The following theorem gives the conditions 
under which a convergent a convergent sequence to have a limit point. 

3.3.7 : Theorem : 
              If a convergent sequence in a metric space has infinitely many distinct points, then 
the limit of the sequence is a limit point of the set of elements of the sequence. 

Proof : Let (X, d) be a metric space and Let {xn } be a convergent sequence in X with limit 
x. If possible, assume that x is not a limit point of the set {xn }. Then there exists an given 
sphere Sr(x) centred at x, which contains no point of the set {xn }. 
             But x being the limit of the sequence {xn } there exists a positive integer n0 such that 
d(x, xn)<r, for all  

               That is, the point    ,......... all lie in the open sphere sr(x) since sr(x) does 

not contain any point of {xn }, we must have   Hence the sequence 

{xn } reduces to a finite sequence {x1 , x2 , ........  xn0 }. This is a contradiction to the 
hypothesis that the sequence {xn } contains infinitely many distinct points. So our 
assumption that x is not a limit point of the set {xn }, is wrong. Hence x is also a limit point 
of then set {xn }. 
              The next theorem says where a sub space of a complete metric space is complete. 

3.3.8 : Theorem : 
              Let X be a complete metric space and let Y be a subspace of X. then Y is complete 
if, and only if, it is closed. 
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Proof : 

                  Let (X, d) be a complete metric space and let Y be a subspace of X. Assume that 
Y is complete as a subspace of X. We shall show that Y is a closed subspace of X. For this 
one has to show that Y contains all its limit points. 
              Let y be a limit point of Y. then for every  the open sphere  contains a 

point, say, y1 of Y. That is .Taking  n= 1,2,3,……, corresponding to each 

there exists a point, say yn of Y such that  Then d(ym,y) , n= 

1,2,3,…….. 

               Consider the sequence {yn} in Y. Since  it follows that 

yn→ y as n→∞, or, {yn} is a convergent sequence in Y. So {yn} is a Cauchy sequence Y. 
(since every convergent sequence is a Cauchy sequence). 
               But Y is complete. So the Cauchy sequence {yn} converges in Y. Since 

 this implies that  That is, Y contains all its limit points, so that Y is 

closed. 
            conversly assume that Y is closed. We shall show that Y is complete. Consider a 
Cauchy sequence {yn} in Y. Since , it follows that {yn} is also a Cauchy 

sequence in X. 
            Since X is a complete metric space, and since {yn } is a Cauchy sequence in X, it 

follows that {yn } converges in X. That is, x is a limit point of the set {yn } and {yn }  Y  
.So x is also a limit point of Y. Since Y is closed x Y.  

            That is, the Cauchy sequence {yn } in Y converges in Y, so that Y is complete. 

Cantor’s Intersection Theorem    

3.3.9 : Definition : 
            Let (X, d) be a metric space and F, a subset of X. The diameter d(F) of the set F is 
defined as :  

3.3.10 : Definition : 
              Let X be a metric space. A sequence {An } of subsets of X is called a decreasing 
sequence. If  

              The following theorem called cantors Intersection Theorem gives conditions under 
which the intersection of decreasing sequence of subsets of a metric space is non-empty. 

3.3.11 : Cantor’s Intersection Theorem : 
              Let (X, d) be a complete metric space and let {En } be a decreasing sequence of non-
empty closed subsets of X such that . Then   contains exactly one 

point. 

Proof : Let {Fn} be a decreasing sequence of non-empty closed subsets of the complete 
metric space (X, d) such that  
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            Since each Fn is non-empty, there exists a point. . 

                   Consider the sequence {xn } in (X, d). Let m, n be any two distinct positive 
integers. Then either m<n or n<m. For definiteness, let m<n. Then  and . 

since {Fn } is a decreasing sequence of subsets of (X, d) and since m<n, we have  

                  So  and thus both xm, xn Fm. 

                           By the definition  

                 xm, xn Fm  

                                    

                                    . 

              Since,  as m→∞ (and have n→∞), it follows  as m,n → 0 

This shows that {xn } is a Cauchy sequence in (X, d). 
               But (X, d) is a complete metric space, so that the Cauchy sequence {xn } converges 
to a point in X. So there exists  such that lim . 

             We now show that so that  is a non-empty is required. 

              Let n0 be a fixed but arbitrary positive integer. Here two cases will arise. Case (i) : 
Let {xn } be a finite. Then for some fixed integer r. 
                   

               Since lim , it follows that 

 
If r <n0,then 

 
So that 

 
If r > n0,then and  

In either case . 

Case (ii): Let {xn } contain infinitely many distinct points. Then x, which is the limit of the 
sequence {xn } is also a limit point of the set {xn }. Hence it is a limit point of the sequence 

                                     

           which is a subset of (since  so x is also a limit 

point of  since is a closed subset of X, the limit point x of is an . 

                Hence , for all positive integers, or,  and thus . 
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Uniqueness : suppose there are two points , then  as 

n→∞. so x=y. 

Baire’s Theorem : 

             Any one of the following equivalent theorem’s is called the Baire’s category 
theorem, or, simply the Baire theorem. 
           We need the following concepts in the proof of the theorem. 

3.3.12 : Definition : 
              A subset A of a metric space (X, d) is said to be a nowhere dense if its closure has 
empty-interior. 
              That is, A is said to be nowhere dense, if its closure  has no interior points, that is, 

for every x     there is a neighborhood G of x, which is not completely contained in . 

               This can be put in the following equivalent forms. 
                A is nowhere dense  does not contain any non-empty open set. (This follows 

from the above discussion)  each non-empty open set has non-empty open subset disjoint 

from  each non-empty open set has a non-empty open subset disjoint from A   each 

non-empty open set contains are open sphere disjoint from A. 

              Using these ideas we prove the first form of Baire’s theorem. 

3.3.13 : Theorem : (Baire’s Theorem First Version) 
                If {An } is a sequence of nowhere dense sets in a complete metric space (X, d), 
then there exists a point in X, which is not in any of the An ’s. 

Proof : The metric space(X, d) is open ( since X and  are open sets in X )Since X is open 
and A1 is nowhere dense in X , There is an open sphere S1 of radius less than 1, which is 
disjoint from A1 . 
      Let F1 be the concentric closed sphere (with S1 ), whose radius is one half 

      that of S1 (that is,  ) and consider its interior Int(F1 )(which is an open set).Since A2 is no    

where dence. Int(F1 ) (which is an open set). Contains an open sphere S2 of radius less than  

,which is disjoint from A2 . 

      Let F2 be the concentric closed sphere whose radius is one half that of S2 (that is,  ) and 

consider its interior Int(F2 )(which is an open set ). 
          Since A3 is nowhere dense, Int(F2 )(being an open set) contains an open sphere S3 of 

radius less than  , which is disjoint from A3 . 

          Let F3 be the concentric closed sphere whose radius is one half that of S3 (that is,  ) 

and consider its interior Int(F3 )(which is an open set ). 
        Continuing this way, we get a decreasing sequence {Fn} of non- empty closed subsets of 

X, such that since radius of Fn is less than  
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        Since the metric space (X,d) is complete, by Cantor’s Intersection Theorem  

contains exactly one point, say, x of X. This point x is in all Fn ’s and hence in all Sn ’s. Since 
each Sn is disjoint from the corresponding An , it follows that x is not in An ,for all n. Thus 
there is a point x in X, which is not in any of An ’s. 
      The following is an equivalent and most commonly used form of the above theorem. 

3.3.14 : Theorem (Baire’s Theorem-second version) 
                If a complete metric space is a union of a sequence of its subsets, the closure of at 
least one set of the sequence must have non empty interior. 

Proof : 

                 Let (X, d) be a complete space and Let {An } be a sequence of subsets of X such 
that . 

                 If possible, assume that the closure of every An has empty interior. Then each An 
is a nowhere dense subset of X and thus {An } is a sequence of nowhere dense subsets of the 
complete metric space X. By the first version of Baire’s theorem, There is a point x in X, 
which is not in any of the An ’s. 

That is, 
           for all n 

 So  This is a contradiction to the fact that . Hence our assumption 

that every An has empty interior is wrong and thus at least one An has non-empty interior. 

3.4  EXERCISE : 
 
(1) Let X be a metric space. If {xn } and {yn } are sequences in X such that  xn→ x and 
yn→y, show that  

(2) Show that a Cauchy sequence is convergent it has a convergent subsequence. 

3.5 : MODEL EXAMINATION QUESTION: 

(1) Define a convergent sequence is a metric space. Show that the limit of a convergent 
sequence in a metric space is unique.  
(2) Define a Cauchy sequence. Show that a convergent sequence in a metric space is a 
Cauchy sequence. Give a example to show that a Cauchy sequence in a metric space need 
not to be convergent.  
(3) If a convergent sequence in a metric space has infinitely many district points, then show 
that the limit point of the sequence is a limit point of the set of elements of the sequence.  
(4) Let X be a complete metric space and let Y be a subspace of X. Prove that Y is complete 
if, and only if, Y is closed. 
 (5) Let (X, d) be a complete metric space and let {Fn } be a decreasing sequence of non-
empty closed subsets of X such that . Prove that contains exactly one 

point. 
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(6) If {An } is a sequence of nowhere dense sets in a complete metric space X, then prove 
that there exists a point x in X which is not in any of the An ’s. 
 (7) If a complete metric space is a union of a sequence of its subsets. Prove that the closure 
of at least one set of the sequence must have non-empty interior. 

3.6  SUMMARY : 

Convergence refers to a sequence getting arbitrarily close to a specific point as the sequence 
progresses, while completeness means that every Cauchy sequence within that space has a 
limit that also lies within the space. Essentially ensuring that there are no holes where are 
converging sequence might not have a point to converge to within the space itself, a complete 
metric space is one where all Cauchy sequences converge to a point in the space. 

3.7  TECHNICAL TERMS :  

 Convergent Sequence: A sequence {x,n} in a metric space (x,d) converges to a point x 
in X if for every  there exists N such that d(x_n,x)  for all n N. 

 Limit: The point x to which a sequence {x_n} converges. 
 Complete Metric Space: A metric space (x,d) is complete if every Cauchy Sequence in 

X converges to a point in X. 
 Compactness: A metric space (X,d) is compact if every sequence in X has a convergent 

subsequence. 

3.8  SUGGESTED READINGS: 

1.  Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill  Book   
Company, New York International student edition. 

      
         Dr. M. Gnaneswara Reddy 



LESSON - 4 

CONTINUOUS MAPPINGS IN METRIC SPACES 
 

OBJECTIVES : 

 To introduce the concept of continuity in a metric space(X,d) through the distance 
function d and to give its equivalent representation through open spaces. 

 To establish a theorem expressing continuity through convergence of sequences in 
metric spaces.  

 To Prove result that expresses continuity by means of open sets in metric spaces. 
 To introduce the notion of uniform continuity in metric spaces and exhibit the 

difference between the continuity and uniform continuity by means of examples. 
 To prove a theorem on the extension of a uniformly continuous function f defined on 

a dense subspace A of a metric space X in to a complete metric space Y to a 
uniformly continuous function from X into Y. 

STRUCTURE : 

4.1   Introduction 
4.2   Continuous Function 
4.3   Uniform Convergence 
4.4   Isometry 
4.5   Exercise 
4.6   Model Examination Question 
4.7   Summary 
4.8   Technical Terms 
4.9    Self Assessment 
4.10  Suggested Readings 
 
4.1 INTRODUCTION : 
 
       The motion of continuity can be successfully introduced into the metric spaces through 
open spheres. In this lesson the continuity is charecterized by means of open sets in metric 
spaces. The motion of uniform continuity is also discussed. 

4.2 CONTINUOUS FUNCTION: 

       In the previous lesson we introduced the notion of convergence in metric spaces and 
studied various aspects relating to it. In this lesson we do the same for continuity. 

4.2.1 Definition : 

        Let X and Y be metric spaces with metrics d1 and d2 respectively and let f be a mapping 
of X into Y, f is said to be continuous at a point x0 in X if, for every there exists  

such that d1(x,x0)< implies that d2(f(x),f(x0)) < , 

                 Since d1(x,x0)<   
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                 and d2(f(x),f(x0)) <   

            the definition of continuity can be stated in the following equivalent form: f is said to 
be continuous at x0 in X if, for every open sphere centered on f(x0), there exists an 

open sphere  (x0 ) centered on x0 such that 

  

           The following theorem expresses continuity at a point in terms of sequences which 
converge to that point. 
 

4.2.2 Theorem : 
            Let X and Y be metric spaces and f:X  Y be a mapping. Then f is continuous at x0 

if, and only if, Xn→ X0  f(Xn) f(x0). 

Proof : Let (X,d1 ) and (Y,d2) be metric be spaces be metric spaces and let f:X Y be a 

mapping. First let us assume that f is continuous at x0 X. 

 

      Let {xn} be a sequence in X such that xn→ x0 as n→∞.we have to show f(xn)→f(x) as 
n→∞. 
      Let  be an open sphere centered on f(x0) in Y. Since f is continuous at x0 , there 

exists an open sphere  in X such that 

………….(1) 

         Since xn x0 as n, corresponding to  >0, there exists a positive integer N such 

that d1(xn,x0) <  for all n  N, or, xn , for all n  N. 

           So f(xn)  for all n  N,or f(x0)  for all n  N, 

Since . 

This shows that d2(f(xn),f(x0))<  for all n  N. That is f(xn)→ f(x0) as n→∞. 

Conversly, assume that xn→ x0 implies that f(xn)→∞ f(x0) as n→∞. 

                    If possible, assume that f is not continuous at x0 .Then there exists an >0 such 

that  does not contain that usage of any open sphere.  this is ,for every 

this is an x  such that f(x)  Taking  , n=1,2,3,……., there 

exists a sequence of points {xn} such that xn  and such that f(xn)  
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            Now xn d1(xn,x0) < →0 as n→∞.  

That is xn→x0 as n →∞ but f(xn)  for all n 

 
 does not converge to f(x0).  

         This is a contradiction to the fact that xn→ x0 as n →∞ implies f(xn) as n→∞, f(x0) as 
n→∞ so our assumption that f is not continuous at x0 is wrong and f must be continuous at x0 
is wrong and f must be continuous at x0. 
 

4.2.3  Definition : 
              Let X and Y be any two metric spaces A mapping f:x Y is said to be continuous 
on X if, it is continuous at every point x of X. 

4.2.4 Remark : 
                  Continuity at a point x0 of a metric space X is a local property, which is satisfied 
at x0 only, where as continuity on X is a global property,  that is a property satisfied at all 
points of X. 
          The following theorem is the consequence of the above theorem. 

4.2.5 Theorem : 
             Let (X,d1 ) and (Y,d2) be metric spaces, and f:X  Y be a mapping Then f is 

continuous on X if, and only. Xn X.  f(xn)  f(x), for all xX. 
            The next theorem charaecterized continuity in terms of open sets. 

4.2.6 Theorem : 
             Let (X,d1 ) and (Y,d2) be metric spaces, and let f be a mapping X into Y. Then f is 
continuous if, and only, if f-1(G) is open in X whenever G is open in Y. 

Proof : Let (X,d1 ) and (Y,d2) be metric spaces, and let f:X Y be a mapping. 
                Assume that f is continuous. Let G be a open subset of Y.  
                       Now f-1(G) = {xX/f(x) G}. 
               If f-1(G) is empty, then trivially it is an open subset of X. 
               So let us assume that f-1(G) is non-empty. We shall show that every point of f-1(G) 
is an interior point of f-1(G), so that it is open subset of X. 
                 Let x  Then f(x)  G. Since G is open in Y, f(x) is an interior point of G. 

So there exists an open sphere (f(x)) such that 

(f(x)) G………..(1) 

              Since f: X Y is a continuous mapping, corresponding to the open sphere (f(x)) 

in G there exists an open sphere  in X centered on x, such that 

                         f( G by,(1) 
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             So f( G,or, That is, there exists an open sphere  

centered on x such that  Hence x is an interior point of f-1(G), so that f-1(G) 

is open subset in X. 
             Conversely, assume that for every open subset G in Y, the set f-1(G) open in X. We 
shall show that f:X Y is continuous. 
              Let x X.Then f(x) Y.Let be any open sphere centered on f(x) in Y. Then   is 

an open set in Y(since an open sphere is an open set). 
By hypothesis f-1(  is an open set in X. Since f(x) it follows that x   

f-1( . 

       Since f-1(  is an open set in X. and since x  f-1( , x is an interior 

point of      f-1( . So there exists an open sphere  centered on x such that 

 

                                             This gives f . 

               So f: X→Y is continuous at x, and hence an X. 

4.3  UNIFORM CONVERGENCE: 

                Let (X,d1) and (Y,d2) be any two metric spaces. Suppose f: X→ Y is continuous at 
a point x  X. Then corresponding to there exists a , such that whenever y X. 

and d1(x , y) < , we have d2(f(x),f(y))< . Here  depends on both  and x. The following 

example explain this fact. 

4.3.1  Example : 

           Consider the function f from the R R given by f(x) = 2x. 

For any x  R and , consider,  then for y  X, we have 

 
                                     = 2  

                                     .So, 

the same , serves for all x X and hence  depends only on . 

4.3.2 Example : 

             Consider the function f:R→ R given by f(x)=x2. 
             Since  
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So, f is continuous at every point x R. 

However, we shall show that  depends upon the point a also. 

Let a R and 2. Choose  

For a=1 and x R, such that , 

We have 
       =  

Now , 

Since  when x=  and 

 when x = . So 

 

So,  

But if a = 10, we have 
f(x) – f(10) =  100 

So, if  x = 10. , then . 

But f(x) – f(10) =  

                                              

                                              =  

So, the same  does not serve the purpose. Hence  depends on  as well as the point a 

at which the continuity is discussed. We know consider a situation where  depends only on 

 and is same for the all points in X. 
 

4.3.3 Definition (Uniform continuity) ; 
         Let (X , d1) and (Y , d2) be metric space. A mapping f: X→ Y is said to be uniformly 
continuous on X, if given  there exists a  such that for all x,y X and 

d1(x,y)< d2(f(x),f(y)) <  

 
4.3.4 Definition : 
       A subset A of metric space (X , d) is called dense in X if = X, that is the closure of A in 

X. 

4.3.5 Theorem : 
        Let (X,d1 ) be a metric space and (Y,d2 ) be a complete metric space and let A be a 
dense subspace of X. If f is uniformly continuous function of A into Y then f can be extended 
uniquely to a uniformly continuous mapping g of X into Y. 
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Proof : :Let (X,d1 ) be a metric space and let A be a dense subspace of X. 

              Let (Y,d2)  be a complete metric space and let f:A  Y be a uniformly continuous 
function. 
       If A = X, then the conclusion is obviously true.  

         We there fore assume that A X. 

      Define the function g:X Y in the following way. 
      If X is the point of A, define g(x) = f(x) 
       If X is a point of x–A, define g(x) as follows: 
Since A is dense in X, every point in X–A is a limit point of A, so that x is a limit point of A. 
Hence there exists a sequence {an} in A which converges to x. Now {an} is a convergent 
sequence, it is a Cauchy sequence in A. 

Since f:A Y is uniformly convergent, given , there exists a  such that for all a,b 

A and d1(a,b)< d2(f(a),f(b))< ……..(1) 

          Again since {an} is a Cauchy sequence is A, corresponding to  >0, there exists a 
positive integer N, such that 

           d1(am,an) < , for all m,n N ……..(2) 

From 1&2, we have given, >0 , there exists a positive integer such that 

             d2(f(am),f(an)) < ,for all m,n N. 

    This shows that {f(an )}is a Cauchy sequence in (Y,d2 ). 
         Now Y being a complete metric space, the Cauchy sequence {f(an )} in Y .converges to 

a point y Y. 
That is, 
              

We shall now show that y depends only on x but not on the sequence {an}. 
To see this let {bn} be other sequence in A such that bn→x as n→∞.Then 
         d1(an,bn)  d1(an,x)+d1(x,bn) 

                        → 0+0 as n→∞ [Since an→x, bn→x as n→∞ ] 
So by the definition of uniform of f : A→Y, it follows that (as in the above discussion) 
               d1(f(an),f(bn))→ 0 as n→∞. 
This gives, (Since f(an)→Y as n→∞), 
               d1((y,f(bn))→0 as n→∞. 
               or, f(bn)→y as n→∞. 
     This shows the limit y depends upon x. 

    Thus, for x X–A, we now define g(x) = y, 

where y = limf(an ) and {an} in the sequence in A such that an x as n  
In this way g is defined for all x in X. 
We next show that g is uniformly continuous. 
Let  

Since f:A Y is uniformly continuous corresponding to 0, there exists a  >0 such that for a 
and a1 in A we have. 
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              d1(a,a1) ………….(3) 

Let x and x1 be any point on X such that d1 (x,x1) < . It suffices to show that d2 (g(x),g(x1)) 

< . 
By the definition of g,  
  x = lim an and x1 =  , 

for some sequences {an} and {  }in A.  

By the triangle inequality we have 
     d1(an, )  

Since an→x, and as n→∞, and d(x,x1)< , it follows from the above inequality 

   d1(an, ) < for all sufficiently large n. Hence, by (3), it follows that 

           d2(f(an),f( )) < ……………..(4) 

for all sufficiently large n. 
 for sufficiently large n, since an,   A. 

 f(an) = g(an) and f( ) = g( ). 

Taking limit n→∞, this gives 
Lim d2(g(an),g( )) <  

Since g(an)→g(x) and g( )→g(x1),this gives 

         d2(g(x),g(x1)) < . 

(Since {xn}→ x and {yn}→y d(xn,yn)→d(x,y)). 

That is for x,x1 X. and d1(x,x1) <  

   d2(g(x),g(x1)) < . 

So g:X Y is uniformly continuous. 

Uniqueness : 
           We know that if f: A  Y and g:X Y are continuous maps such that f(a)=g(a) for 
every aA  , then f(a) = g(a) for every a , the closure of A. 

         In the theorem A=X. so if g and h are two uniformly continuous extensions of f:AY, 
then g(a) = h(a) for all aA, the g(x) = h(x) for all x  = x 

                     So g= h on X and g is unique. 

4.4  ISOMETRY: 

4.4.1 Definition : 
            Let (X,d1 ) and (Y,d2) be any two metric spaces A mapping f:X Y is called an 
isometry (or, an isometry mapping) if 
                d1(x,x1) = d2(f(x),f(x1)) for all x,x1 X. 
           That is isometry between metric spaces is, distance preserving mapping. 
                Clearly isometry is one-one correspondence. 

4.4.2  Example : 

              Isometry on metric spaces is a uniformly continuous map. 
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     Solution :  Let (X,d1 ) and (Y,d2) be any two metric spaces and f:X Y be an isometry. 

          Let   >0. Choose  =. 

Then, for x,y X and d1(x,y) <  (=), we have d2(f(x),f(y)) = d1(x,y) < =. 
             (Since f is an isometry) 

Since (=) depends on  only, f is uniformly continuous. 

4.5 EXERCISES : 

1. Let X and Y be metric spaces and let f be a mapping of X into Y. If f is a constant 
mapping, show that f is continuous.  
2. Let X be a metric space with metric d, and x0 be fixed point in X. Show that the real 
function  defined on X  (x) = d(x,x0 ) is continuous. 

 3. Let X and Y be metric spaces and A be a non-empty subset of X. If f and g are continuous 
mappings of X into Y such that f(x) = g(x) for every x in A, show that f(x) = g(x) for every x 
in . 

 4. Let X and Y be metric spaces and f a mapping of X into Y. Show that f is continuous 
f1(F) is closed in X whenever F is closed in Y. 

4.6 MODEL EXAMINATION QUESTIONS : 

1. Define the concept (i) continuity at a point x of a metric space X and (ii) continuity in X. 
2. Let X and Y be a metric spaces and let f:X  Y be a mapping. Show that f is continuous    
    at x0  X if, and only if, xnx0  f(xn) f(x0) 

 3. Let (X,d1 )and (Y,d2) Y be a mapping. Show) be metric spaces and let f:X  Y be a  
   mapping. Show that f is continuous on X if, and only if, xnX  f(xn) f(x0), for all x X 

4. Let (X,d1 )and (Y,d2) be metric spaces and let f:X Y be a mapping. Prove that f is  
    continuous if, and only, if f-1(G) is open in X whenever G is open in Y. 
5. Let X be a metric space and A be a dense sphere of X. Let Y be a complete metric space.  
    If is a uniformly continuous function of A into Y, then prove that f can be extended  
    uniquely to a uniformly continuous mapping g of X into Y. 
6. Define isometry on metric spaces and show that it is a uniformly continuous mapping.  
7. Let x be a metric space. Show that any two distinct points of X can be separated by open   
      spheres. 
8.  Show that the subset[0,1) is not an open set in the set of real numbers R. 
 9.  Let X be a metric space. Prove that (i) Any union of open sets in X is open, and (ii) Any  
     finite intersection of open sets in the X is open.  
10. Prove that every non-empty open set on the real line is the union of countable disjoint    
      class of  open intervals.  
11. Define(i) an interior point of an subset A of a metric space and (ii) the interior Int(A) of a  
     subset A of X. Prove that A is open if, and only if, A = Int(A).  
12. Define a limit point of a subset A of a metric space X. Give an example to show that a   
      limit point of a subset of a metric space need not to be point of the sub set.  
13. If any metric space, show that the empty set and the full space X are closed sets.  
14. Show that a subset F of a metric space X is closed if, and only if, its component F1 is  
      open.  
15. Define a closed sphere in a metric space in a metric space. Show that a closed sphere in a    
      metric space is a closed set.  
16. Let X be a metric space. Prove the following  
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      (i) Any intersection of closed sets in X is closed.  
      (ii) Union of finite number of closed sets in X is closed. 
17. Define the closure of a subset A is a metric space X. show that A is closed if, and only if,   
      A = .  
18. Let X be metric space and let a be a subset of X. If x is a limit point of A, show that each   
      open sphere centered on x contains an infinite number of distinct points of A. 
 

4.7  SUMMARY : 

A continuous mapping is a function that maps one topological space to another in a way that 
preserves certain properties. It is a generalization of the concept of a real valued continuous 
function. 
 

4.8  TECHNICAL TERMS : 

 Continuity on a space: A function f is considered continuous on the entire metric space 
X if it is continuous at every point in X. 

 Open Set: A set U in a metric space (x,d) is open if for every x in U, there exists  

such that B(x, . 

 Relationship with sequences: A function is continuous if and only if for any sequence 
{xn} in X converging to x, the sequence {f(xn)} converges to f(x). 
 

4.9  SELF ASSESSMENT QUESTIONS: 

1.The continuous image of a compact metric space is … 

 a. Not compact 
 b. Compact  
 c. Disconnected 
 d. None of these  

Ans: b 

2. The function 𝑓: (0, 1) → ℝ defined by 𝑓(𝑥) = 1 𝑥 is  

a. Both continuous and Uniformly continuous  
b. Uniformly continuous but not continuous  
c. Continuous but not Uniformly continuous 
d. Neither continuous nor Uniformly continuous 

Ans: c 

4.10  SUGGESTED READINGS: 

1.  Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book 
Company, New York International student edition. 

 
Dr. M. Gnaneswara Reddy 

 



 

 

LESSON - 5  

TOPOLOGICAL SPACES-DEFINITIONS AND 
SOME EXAMPLES 

 
OBJECTIVE: 

 A topological space is a set of points with a structure that defines how close points are 
 This structure is called a topology and it’s a collection of subsets of the set. 
 The elements of the topology are called open sets 

 

STRUCTURE : 

5.0  Introduction 
5.1  Topological Space 
5.2  Answers to SAQ’s 
5.3  Model Examination Questions 
5.4  Summary 
5.5  Technical Terms 
5.6  Self Assessment Questions 
5.7  Suggested Readings 
 
5.0: INTRODUCTION:  
 
           The word topology, a branch of Mathematics, which is de- rived from Greek words has 
literal meaning, “ the science of position”. A topological property is a property of a “ 
topological space” which is possessed by all topological spaces that are “homeomorphic” to 
the space. Topology can be defined as the study of all topological properties of topological 
spaces. 

If we think of a topological space as a diagram drawn on a rubber sheet a 
homeomorphism may be thought of as any deformation of this diagram. A topological 
property, then would be any property of the diagram which is in- variant under any 
deformation. That is why topology is also called a rubber sheet geometry. 

In this lesson we start with the definition of a topology on a set, a topo- logical space, a 
subspace of a topological space, the topology generated by a class of subsets of a set and 
provide a good number of examples. A special type of topological spaces , called metric spaces 
deserve separate attention because of their resemblance with the real line. We make a 
preliminary study of these spaces as well. 

 

5.1: TOPOLOGICAL SPACES : 
 

5.1.1: Definition : Let X be a non empty set. A class T of subsets of X is called  a topology on X 
if it satisfies the following conditions. 

1. The union of every class of sets in T is in T. i.e. if  is any class
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of sets in T indexed by a set 1. Then  O is in T and The intersection of every finite class 
of sets in T is in it i.e C  T is any finite class of sets and G is the intersection of the sets in C then 
G T . If T is a topology on X we call the ordered pair (X, T) a topological space. 
 

5.1.2: Remark : In definition 5.1.1 condition 

(i) is described by saying that T is closed under arbitrary unions while condition is 
described by saying that T is closed under finite intersections. 

 
5.1.3: Remark : The empty set is finite and the intersection of a family of subsets of X 
indexed by the empty set is the universal set X. Like wise the union of a family of sets 
indexed by the empty set is the empty set. Thus if  ( X, T) is a topological space, then  T 
and X T . 
 

5.1.4:SAQ : Show that condition (ii) of definition 5.1.1 holds if and only if 

X T , and AT , B T  A  B T 

5.1.5: Example : Discrete Topology : Let X be a non empty set. For T we take the power set 
P(X) of X,T is a topology. That is clear since P(X) contains all subsets of X and hence is 
closed under arbitrary unions and finite intersections. This topology is called the discrete 
topology of X. 

5.1.6: Example : Let X be a nonempty set and T = {, X } , Clearly T is closed under 
arbitrary unions and finite intersections hence T is a topology on X. This topology is called 
the indisecrete topology on X. 
 

5.1.7: Example : Suppose X is a nonempty set. We take T to be the class consisting of 
all  where 

i. Either  or 
            X/A is a finite set  

Then T is a topology on X. This topology on X is called the confinite topology or the topology 
of finite complements. 
 
Sol : Let {Ai/iI} be any family of sets in T. 
If  then  by (i) 
 
 If  then  for some . Now 
 
  
 
 Since , is finite,  is finite. 
 
  satisfies (ii) so lies in T 
Hence T is closed under arbitrary unions  , so .  
If A1, A2 are in T and   then , so   

are finite. Hence   is finite. Hence . 
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Hence T is closed under finite intersection. Thus T is a topology on X. 

5.1.8:SAQ:We fix a symbol which is different from every natural number and write 

. The  set T consists of all sets A where (i)  or (ii) ,  and  

is a finite subset of . Then  T defines a topology on . 

 

5.1.9: SAQ: If T1,T2 are topologies on X it is not necessarily true that T1T2 

Is a topology on X. Give an example. 
 

5.1.10:SAQ: If T is a topology on X it is not necessarily true that T is closed under 
arbitrary intersections. Give an example. 

 

5.1.11:Proposition: If  is any class of topologies on a nonempty set X and 

 then T is a topology on X. Further if T is any topology on X such that , 

, then . 

Proof: T is closed under arbitrary unions:  
 

  
 

 (  is a topology) 
 

  
 

   
 
T is closed under finite intersections: If  is any finite family of subsets of X, 

. 
 

 (Since Ti is topology) 
 

  
 

  

Since T is closed under arbitrary unions and finite intersections T is a topology on X If T1 is a 
topology on X such that  ,  , it is clear that . 
 

Comparison of Topologies: 

5.1.12: Definition: Let X be a non empty set and T1, T2 be topologies on X.We say that T1 
is weaker (= coarser) than T2 and write in symbols T1 T2  ifT1 T2 . In this case we also 

say that T2 is stronger ( = finer) than T1and writeT2 T1. 

Remark : The indiscrete topology  alone is contained in every topology on X so 
that   T is weaker than every topology on X. Thus we may say that the indiscrete topology is 
the “weakest” topology on X. 
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Like wise the discrete topology P(X) consisting of all subsets of X is the “Strongest” 
topology on X as it is stronger than every topology on X.  
 
5.1.13:Proposition: Let   be a collection of subsets of X. There is a unique 
topology T on X such that 

1.  and 
2. for every topology T1 containing A. 

Proof: Let C be the class of all topologies T1 on X containing A. 

Since  , C nonempty if ,  by proposition 5.1.11 T is a topology on X. 

Since   , , . 

If   T1 is any topology on X such that  then  so  

Thus  satisfies the required conditions. 
If T1 is a topology on X satisfying  (i) and (ii),  hence  
Since T satisfies (i) and (ii)  hence  
Thus  
This proves uniqueness.  
 
5.1.14: Definition :Given , by the topology generated by A we 
mean the topology T which is the smallest topology containing A. 

  
T is also called the topology generated by A. 
 
5.1.15: Proposition : Given any collection  of topologies on X there is a unique 
topology T on X such that 

(i)  

If  T1 is any topology such that  ,then     

Proof: Let C be the collection of all topologies on X that contain  for every  and T0 be 
the intersection of all topologies in C. 

  
By proposition 5.1.3 T0 is the smallest topology on X containing . 
Thus T0 is be required topology. 

5.1.16:Theorem: Let X be a non-empty set and let T(X) be the class of all topologies on X. 
Let  on T(X) be defined by  for . Then  in a 
complete lattice. 
Proof: Clearly the indiscrete topology is the least element and the discrete topology is the 

greatest element in . 

Let  be a non-empty family of topologies on X. 

Let  
Let } 
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Let  

Thus T1 and T2 are topologies on X and it is easy to verify that 
 and 

  

Hence  is a complete lattice. 

 
5.1.17: proposition: Let T be a topology on a nonempty set X.  be a nonempty set and 

 Then TY is a topology Y. 
Proof:(1) Ty is closed under arbitrary unions : Let   be an arbitrary class of sets in Ty. For 
each  
Hence  , Since T is closed under arbitrary unions  
hence  
(2) Ty is closed under finite intersections: Cleary . So it is enogh to prove that  and 

. Since  such that  
Similarly . 
Since  and . Hence   
Hence TY is a topology on Y. 
 
5.1.18: Definition : The topology  is called the relative topology on Y 
and (Y,TY) is called a subspace of (X,T). If (Y,Ty) is a subspace of (X,T) it is customary to 

say that Y is a subspace of X. 
In definition 5.1.14 the topology generated by a given family A of subsets of a set  is    
described as the smallest topology on X containing the given family A. In the following 
proble-m we provide a characterization for this topology. 
 
5.1.19: Problem : Let X be a nonempty set and  write T1(A) for the family of 
subset of X each of which is the intersection of a finite class of sets in A and T2(A) for the 

family of subsets of X each of which is an arbitrary union of sets in A. Prove that T2(T1(A)) 

is the topology generated by A on X by providing the following. 

1) T1(A) is closed under finite intersection and  

2) T2(A) is closed under arbitrary unions and  

3) T=T2(T1(A)) is a topology on X and  

4) If T1 is any topology on X containing A then T is contained in T1 

Solution: (1) Note that T2(T1(A)) is the family of all unions of finite intersections of set in A. 

If A is empty, then T1(A) = {X} and T2(T1(A)) = {, X}. Clearly 

{, X} is the topology generated by A. So, we may assume that A is nonempty. 

Let  and  Where F1, F2 are finite subsets of A 
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Then  because  is a finite subset of A. Clearly . 

(2) Let  be any arbitrary family of sets in T2(A). For each  a set 
 . 

Then  and  

Hence T2 (A) is closed under arbitrary unions. 
Clear .
(3) We claim that T = T2(T1(A)) is a topology on X containing A. Clearly T contains and 

X. From  (2). T is closed under arbitrary unions. We show that T is closed under finite 

intersections. For this it is enough to show that AT, BT. 

A  B T  
Let  and  where  and  for . 

Then  where  since T1 (A) is closed under finite 

intersections (by 1) 
  

Then 

Since T is closed under finite intersections and arbitrary unions T is topology on X. Since 

(4). Let T1 be any topology on X containing A. Since T is closed under arbitrary unions and 

finite intersections, T1(A) T1 and hence T= T2(T1(A)) T1. 

This completes the proof. 

We now consider special type of topological spaces called metric spaces. A metric on a set 
X resembles the distance between real numbers and so several properties ofline distance on 
the real line  may be extended to a metric space. 

 

5.1.20: Propositions: Let (X,d) be a metric space and Td be the class of all open sets in X. 

Then Td is a topology on X. 

Proof: (1) Clearly and X are in Td. 

Td closed under arbitrary unions: Let  be any class of sets in Td and 

 for some . Since Gi is open there exists 

 .Hence . Since this holds . 

(2) Td is closed under finite intersections: Let G1Td and G2Td. x G1G2 

X G1 and also x G2. 
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If   

  

  

  

  

Since corresponding to every 

 . 

Hence Td is closed under finite intersections. This shows that Td is a topology on X. 

 

5.1.21: Definition: The topology Td on X defined in proposition 5.1.20 is called the topology 
on X induced by the metric d or simply the metric topology corresponding to d or the usual 
topology on the metric space X. The sets in Td are called the open sets generated by the metric 
d on the space X. 

 
5.1.22: Example:the usual topology on the Real line . 

By an open interval in  we mean a set of the form (a,b)={x/x  , a<x<b} where a  , b 

  . A closed interval is of the form [a,b]={x/x  , a x  b} and an open closed interval is 

defined to be (a, b]={x/x  , a < x  b}, and a closed. Open interval is defined to be [a, b) = 

{ x i a x b}. The absolute value or modulus of x  is defined by 

 

Let . 
TU is a topology on . This topology is called the usual topology on .Verification on the 

conditions for a topology. 

(i) TU is closed under arbitrary unions : Let  be an arbitrary class of sets in TU and 
 for some . Since for any such i, 

. 

This is true . Hence  

TU is closed under finite intersections: Let  
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Thus  

Thus TU is a topology on  
Consider the real line  . We define a metric on R by d(x,y) = |x–y|. This is called usual 

metric on  . Note that the usual topology on  mentioned above is the same as the topology 
induced by d. 

5.1.23: Note: 

The Euclidean : 

If n is a positive integer,  stands for the set of all n-tuples (x1,x2……xn) where 

. If  and identify (x1) with x. n tuples x (x1, 

x2,…..xn) and y =(y1,…….yn) are said to be equal if xi = yi for . We define x + y = 

(x1 + y1,…………., xn + yn). If  . We define ). We define 

 and call this the norm of the vector x. 

This norm is called the Euclidean norm on  and  with this norm is called the Euclidean 

space. 

5.1.24: Def (Euclidean Topology):The metric d defined by d(x,y) = ||x–y|| is called the 
Euclidean metric. The topology induced by the Euclidean metric is called the Euclidean 
topology on  

5.1.25: The Unitary space : If n is a positive integer,  stands for the set of  all n-tuples 
(z1…….zn) where . If x = 1 we write  and identify (z) with  z.  If  

 and . We say that .  
We define  
For  we define   where z = (z1,……….zn) 
We call  , the norm of the vector z. 
 
5.1.26: Spaces  and : 
We write K for either  or  and  for the collection of all sequences {xn} where 

 .We write  for all sequences {xn} in for which . The space 
is called the infinite dimensional Euclidean space while  is called the infinite dimensional 
Unitary space.
 
5.1.27: Example: 
Let x be any nonempty set. The discrete metric d on X is defined by for x, yX 

  

If xX and 0 < r 1, Sr(x) = {y X /d(x, y) < r < 1} ={x} 
If r >1                               Sr(x) = {y X /d(x, y)<r} ={y / y X}=X 
Consequently, if  and  this implies that the induced 

topology T consists of all subsets of X. Since T = P(X), the topology induced by the discrete 
metric is the discrete topology on X. 
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5.2: ANSWERS TO SAQ’s: 
 

SAQ: 5.1.4: If T is closed under finite intersections,  

. As said in Remark 5.1.3 X  T. 

Conversely suppose  and also suppose  X  T 

Then T contains the intersection of a family of sets in T indexed by the empty set. 
If {A1,………An} is a non-empty finite family of sets in T  

then  

Thus we can apply induction on n. If  by hypothesis. Assume that 

 whenever . Since  

, then  by induction hypothesis. Hence the intersections of 

n elements in T is in T whenever it happens for  . So by induction this holds for all 

. 

SAQ :5.1.8: 

Suppose . If one of  A1, A2 is a subset of   then so is  so 
. If  then  ,  are finite subsets of .Hence 

  is a finite subset of . So . Thus T is closed 

under finite intersections as the intersections of an empty family lies in T by conditions 
(2) of this questions and by SAQ 5.1.4. That T is closed under arbitrary unions can be 
proved as in example 5.1.7. 
 

SAQ: 5.1.9: X ={1,2,3} 

  

  

  

T1 is a topology and T2 is a topology but  is not a topology as  

  

 

SAQ: 5.1.10: Let .
Here Un satisfies (2) of SAQ 5.1.8. So  

. 

 

5.3: MODEL EXAMINATION QUESTIONS: 
 

1) Define a topology on a nonempty set X and a metric on X. Show that every metric induces 
a topology on X. 

2) Let X be a nonempty set, . Show that T is a 
topology on X. 
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3) Show that the class of topologies is a complete lattice with set inclusion. 
 
4) If T1, T2 are topologies on a set X show that TT2 is not necessarily a topology on X. 

Show also that there is a topology T on X containing both T1 and T2 and which is 
contained in every topology containing T1, T2. 

 

EXERCISE: 
 
1.  Let X be a nonempty set and T be the class of all subsets of X whose complements are 

countable. Also let T. Then show that T is a topology on X. 
2. Let Z YX. If T is a topology on X and Ty, Tz are the relative topologies on Y and Z 

respectively show that (Z,Tz) is a subspace of (Y,TY) i.e. TZ is the relative topology on  

Z with respect to the topology Ty on Y. 
3. Let X={a,b,c}T= {,{a},{a,b}{a,c}X}.  Show that {X, T) is a topological space. 
4. Find all possible topologies on X when 

(a)X={a} (b) X ={a,b} (c) X = {a,b,c} 
Compare the topologies obtained in 
(i) 4(a) (ii) 4(b) (iii) 4(c) 

5. Show that the relative topology on the set Z of integers as a subspace of the real line 
with the usual topology is the discrete topology on Z. 

6. Show that the indiscrete topology on a set consisting of at least two elements is not 
metrizable. 

7. Let B be the collection of all open intervals (a,b) in , show that T2(B) is a topology on  

8. Let B0 be the collection of all intervals of the form (a,b) where aQ and bQ Show that 

T2(B0) is a topology on . 

9. Are the topologies T2(B),T2(B0) in (7) and (8) equal ? Is any one of them equal to the 

usual topology? 
 
5.4  SUMMARY : 
 
Topological Spaces are Mathematical structures that define abstract relations of closeness and 
connectedness between objects in terms of relationships between sets rather than geometrical 
properties. 
 
5.5  TECHNICAL TERMS : 
 
Topological Space: A set X together with a collection  of subsets of X, satisfying certain 
axioms, is called a topological spaces. 
Topology: The collection   of subsets of X is called a topology on X. 
Hausdroff Space: A topological space X is said to be Hausdroff if for any two distinct points 
x,y in X, there exist neighborhoods U and V of x and y, respectively, such that U  V=  
 
5.6  SELF ASSESSMENT QUESTIONS: 
 

5.1.4:SAQ : Show that condition (ii) of definition 5.1.1 holds if and only if X T , and 
AT 

B T  A  B T 
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Answer: If T is closed under finite intersections,  

. As said in Remark 5.1.3 X  T. 

Conversely suppose  and also suppose  X  T 

Then T contains the intersection of a family of sets in T indexed by the empty set. 
If {A1,………An} is a non-empty finite family of sets in T  

then  

Thus we can apply induction on n. If  by hypothesis. Assume that 

 whenever . Since  

, then  by induction hypothesis. Hence the intersections of 

n elements in T is in T whenever it happens for  . So by induction this holds for all 

. 

5.1.9: SAQ: If T1,T2 are topologies on X it is not necessarily true that T1T2 

Is a topology on X. Give an example. 

Answer:  X ={1,2,3} 

  

  

  

T1 is a topology and T2 is a topology but  is not a topology as  
  

 

5.1.10:SAQ: If T is a topology on X it is not necessarily true that T is closed under 
arbitrary intersections. Give an example. 

Answer:Let .
Here Un satisfies (2) of SAQ 5.1.8. So  

. 
 
5.7  SUGGESTED READINGS: 
 

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill 
Book Company, New York International student edition. 

 
Dr. M. Gnaneswara Reddy 

 

 
 
 



 

 

LESSON - 6 

ELEMENTARY CONCEPTS IN 

TOPOLOGICAL SPACES 
 

OBJECTIVES: 

 Understand the basic definitions. 
 Familiarize with topological properties. 
 Develop understanding of topological operation. 
 Apply topological concepts to simple spaces. 
 Develop problem solving skills. 
 Understand the relationship with other mathematical structures. 

STRUCTURE : 

6.0 Introduction 
6.1Concepts in Topological Spaces 
6.2 The closure operation 
6.3 Solutions to short answer questions 
6.4 Summary 
6.5 Technical Terms 
6.6 Self Assessment Questions 
6.7 Suggested Readings 

6.0: INTRODUCTION: 

The first countability axiom, the axiom of second countability are also introduced and the 
famous Lindelof’s theorem along with simple but important consequences are proved. 
Separability in relation to second count-ability is also discussed. 

6.1: CONCEPTS IN TOPOLOGICAL SPACES: 
 

6.1.1:Definition: Let  be a topological space .  is said to be an open set or simply 
V is open in X or V is open if .  is said to be a closed set or simply F is closed in 
X 
or F is closed if its complement F=X/F is open in X. If , the closure of A, denoted by  
is the intersection of all closed supersets of A i.e.,  A is dense 
in X if  , In this case we simply say that A is every where dense or A is dense.  is 
said to be a separable space or X is said to be separable if X has a countable dense subset. 
 
6.1.2:Remark: Since the intersection of the empty family of sets ( in ) is the space X, 

. Since the union of the empty family of sets ( in ) is the empty set .Then 
and X are open sets in X consequentlyand X are closed sets. 
 

6.1.3: Examples : If X is a nonempty set, every subset of X is open, in the discrete topology 
and hence every subset of x is closed where as in the case of the indiscrete topology the only 

open sets are and X, hence the only closed sets are and X. 
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6.1.4:Propositions: The class of all closed sets in a topological space  

has the following properties. 

(i)  
(ii) A ,B AB  

 (iii){Ai\iI}   

Proof : (i) follows by remark 6.1.2 
We use De Morgan’s laws: 

  

  

  

  

  

  

  

  

  

  

6.1.5: Corollary : The class  of all closed sets in a topological space is closed under finite 
unions and arbitrary intersections. 

Proof follows from proposition 6.1.4. 
 

6.1.6:SAQ: Suppose is a class of subsets of a non-empty set X which is closed under finite 

unions and arbitrary intersections. Show that  is a topology on X. 
 

6.1.7: SAQ: If (X, d) is a metric space  Justify your 
answer. 
 

6.1.8: SAQ: In a metric space (X, d) show that{x} is a closed . 
 

6.2: THE CLOSURE OPERATION: 
 
We have defined the closure of a set A in a topological space  to be the intersection of all 
closed sets containing A. The set X is closed as Y so that the collection of subsets of X that are 
closed in  and containing A is nonempty. Moreover, the intersection of any class of 
closed sets is closed so that A is a closed set containing A. Moreover,  is the “Smallest” 
closed set containing A since every closed set F that contains A, also contains . 

 
We will prove soon that this closure operation assigning   to an arbitrary set A in X 

satisfies “Kuratowski closure axions”. We will also prove that any operation on P(X) 
satisfying these axioms induces a unique topology on X so that the closed sets in this 
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topology are precisely those subsets of X that are in variant under this operation. 
6.2.1: Proposition: Let  be a topological space the operation  from P(X) into 
P(X) where  is the closure of A satisfies the following: 

  
  

  
  

 
Proof : By definition . So  closed . In 
particular when  since  is closed. Then . This proves . 

If A  X , then A {F / A F , F is closed} 
Hence   
If , then   is a closed set and clearly  . Hence  
Since  by K2, it now follows that  
Let  and  . Clearly by K2,  ,  

 so that . Since  is closed. 
. Further  

Since  is closed . Similarly   
Therefore  
Hence . This process K4  
 
6.2.2:Theorem : Let X be a nonempty set. Suppose that with every subset  A  of  X   a set  is 
associated and that this association satisfies the following “Kuratowski closure axioms” 

1)   
2)   

3)   

4)   

Then there is a unique topology  and X such that a set  is closed in this topology if and 
only if . 
 
Proof: Let  clearly   so that  

 

A , B  = A and  = B 

 A B =    =  

 A B  

We prove that  is closed under finite unions by using the principle of mathematical 
induction on the number of sets. Clearly this holds when n =1 and that this also holds for n = 
2 is proved above. Now assume that the union of any n sets in  is in  . 

Let A1,………….An+1 set in . Then i 
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Since  by induction hypothesis. Hence  
This shows that, whenever  is closed under union for n sets,  is closed under union for 
3(n+1) sets. 

Hence by induction  is closed under finite unions.  

We now show that   is closed under arbitrary intersections . Let  be any nonempty 
class of sets in  . Then  
Clearly    (by 2). To prove the reverse inclusion we first note that  

  
 (by 2) 

Since  
Since this is true  
This shows that , hence  
Since  
Since this is true  
This shows that , hence  
Thus  is closed under arbitrary intersections. By SAQ 6.1.6 , it follows that Y={A/A1} 
is a topology on X. 

 is closed in this topology. 

  
For uniqueness, suppose  is any topology on X such that A is closed in  if  , for 
every subset A of X. Then A is closed in  is closed in  
This completes the proof of the theorem. 
 

6.2.3: Corollary : Let Y be the unique topology on X obtained from the given operation 
 

from P(X) into itself as in the above theorem. Then for any , the closure of A in   
is precisely  .  

Proof : For clarity, the closure of   A in   is denoted by A, for any subset A of X. 
Note that 

  

  

Since  and  
But A is closed and  

  
 
Thus   as required 

6.2.4: Definition : A neighborhood of a point x is a topological space  is an open set 
containing x. A class neighborhood of a point x in a topological space (X,Y) is called an open 

base  at the point x(or for the point x) if every neighborhood of x contains a member of 
 

6.2.5:Example : If (X, d) is a metric space and x X ,the class of open spheres {Sr(x) / r > 0} 
is an open base at x because by definition every open set containing x contains Sr(x) for some 
r > 0. 
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6.2.6: Proposition  :  Let   be a topological space and A  X . Then 

 = {x / x  X and every neighbored of x intersects A }. 

Proof : Let B be the set specified on the right hand side. Let x   and V, any neighborhood  
of x. If  . Since V is an open set V1 is a closed set containing A. 
Hence  .    

Since x    , x V 1 so that x V . This is a contradiction so that every neighborhood of 
intersects A , hence …………….(1) 
Now suppose that . We show that , if  then  is a neighborhood of x 
since . This contradicts the assumption that every neighbourhood of x 
intersects A. Hence  as required. There fore . This , together with (1) yields 

. 
 
6.2.7: Definitions : Let X be a topological space A  X . A point x  A is called an isolated 
point of A if it has a neighborhood V such that V  A ={x} A point x X is called a limit 
point of A 
if each of a its neighborhoods contains a point of A other than x. The set of limit points of A 
is called the derived set of A and is denoted by D(A). 
 

6.2.8: Remark : It is customary to call V\{x} a deleted neighborhood of x if V is a neighborhood 
of x. Thus x is a limit point of A if and only if every deleted neighborhood of x intersects A . 

A limit point of a set A is not necessarily a point of a where as an isolated point of A 
must necessarily belong to A. 

 

6.2.9: Proposition : Let X be a topological space and A be a subset of X, then 

i)   
ii)  is the set of isolated points of A. 
iii)  if and only if A is closed. 

 
Proof : (1) If x     , then by proposition 6.2.6 every neighborhood of x intersects A so that 
if  every neighborhood of x intersects A in a point other than x so that x is a limit point of 
A, hence . Thus .  
On the other  every neighborhood of x intersects A in a point other than x so that x  

 .  
Hence . Since . 
It is now clear that . 

(1) If x    and  there is a nbd V of  \  so that by (1) . Hence 
x is an isolated point of A. 
Conversely if x is an isolated point of A, then x  A and there exists a neighborhood V of 

 so that . This implies that . Thus  
is the set of isolated points of A. 
(2) Since  and A is closed if and only if , if follows that A is closed if 
and only if  if and only if . 
As a consequence we have the following theorem.  
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6.2.10: Theorem :Let X be a topological space. Then any closed subset of X is the disjoint 
union of the set of its isolated points and the set of its limit points in the sense that it contains 
these sets, they are disjoint and it is their union. 

Proof : Let A be a closed subset of X and i(A) the set of isolated points of A. 
Then  and by proposition 6.2.9.  so that 

 and . 
 
6.2.11: SAQ: Let X be a non empty set and T={ , X } be the indiscrete topology on X. 
Determine  for . 
 
6.2.12: SAQ: Let  and T be the topology on  described in problem 25 of lesson 
2. Determine D(A) and  for  . 
6.2.13:SAQ: Show by an example that D(A) is not necessarily closed for a subset A of 
a topological space. 
 
6.2.14: SAQ: Show that if (X,d) is a metric space and  then D(A) is a closed subset 
of X. 
 
6.2.15: Definitions : Let (X,T) be a topological space and A be a subset of X. The interior of 
A, denoted by int(A) is the union of all open sets contained in A. A point  is called an 
interior point of A if  int (A); i.e,  some open set  equivalently some 
neighborhood of x is contained in A. 
 
6.2.16: Remark : It is clear that x is a boundary point of A if and only if every neighborhood 
of x intersects A as well as its complement A1. 
 

6.2.17: Theorem : Let X be a topological space. Then any closed subset of X is the disjoint 
union of its interior and its boundary; in the sense that it is their union. 
Proof : Let  be a closed set and  the boundary of A. When A is closed 

  , clearly  . If , then some neighborhood V of x is 
contained in A so that  and so . 
On the other hand if  and every neighborhood V of x intersects A1 so that 

V A . This implies that x int( A). Hence int . 
Clearly  and x is not an interior point of A , every neighborhood V of x intersects A1 

and A so that . Hence . 
This completes the proof. 
 
6.3: SOLUTIONS TO SHORT ANSWER QUESTIONS : 

SAQ: 6.1.6: Use De Morgan’s law :  

 and  

  

  

If I if finite and ;  
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SAQ :6.1.7: Let X be a set with at least two points and d be the discrete metric 
on X if ,  then  
Since the topology induced by this metric is the discrete topology every 
subset of X is open hence closed . Thus   
However  
Thus it is not necessarily true that in a metric space    
 
SAQ :6.1.8 : Let (X,d) be a metric space and x  X . If X = {x}, {x} is closed. Suppose {x}  
X .  
Then \ \  
We show that . This holds since  

. Since {x} 

Then . This shows that X\x is an open set. Hence {x} is a closed set.  

 

SAQ: 6.2.11: We consider (X, j), j = {, x}. 
Suppose . If  and  , then x is the only neighborhood of x in X. We have 

  
Therefore x is a limit point of the set . 
We have  

And so x0 is not a limit point of the set .  
 
SAQ: 6.2.12: We consider  

Suppose A   is a finite subset. Then D(A) = and hence  = A 
Suppose A is infinite. 
Consider a neighborhood V of  . By definition V1=  \ V is finite; therefore there are at least 
two points x,y in A which are not in V1. Thus x,yV. 
At least one of them is different from  . Thus A (V \ {})  . 
So  is a limit point of A 
Let n   . Then {n} is a neighborhood of n. 
we have A  ({n} \ {n}) = . 
So n is not a limit point of A 
Hence D(A) = {} and  = {}  
 
SAQ: 6.2.13: We consider a set X with at least two elements with the topology  
T ={, X}. In SAQ 6.2.11. We have seen that the set X\{x} is the set of limit points of {x}. 
Since X contains at least two elements X\{x} is not empty and is not equal to x. Therefore it 
is not a closed subset of X: 
D({x}) is not a closed set. 
 

SAQ: 6.2.14: Let z be a limit point of D(A). To show that z  D ( A) we have to show that z 

is a limit point of A. Let V be a neighborhood of z. Since z is a limit point of D(A),a y D ( 

A)V such that y  z . Since y V an r > 0 Sr ( y ) V . Since d(y,z) >0 we may choose 

r 0 < r < d (x, z) . Since y  D ( A),  an . Since 
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 so that x z . Also x  Sr ( y ) V .Thus x V A 

and x  z . Since every neighborhood V of z contains x  z x  A , z is a limit point A. 
There fore D(A) is a closed subset of X. 
 
6.3  SUMMARY: 
 
The concept of topological space is only one link in the chain of abstract space constructions 
which forms an indispensable part of all modern geometric thought. All of these 
constructions are based on a common conception of space which amounts to considering one 
or more systems of objects-points, lines, etc. 
 
6.4  TECHNICAL TERMS: 
 

 Topology: A collection of subsets of a set X, satisfying certain axioms. 

 Open set : A subset  U of X that belongs to the topology. 

 Closed Set: A subset A of X whose complement X-A is open. 

 Neighborhood: A set N containing an open set U with x U 

 Interior : The largest open set contained in a set A, denoted by int(A) 

 Closure: The smallest closed set containing a set A, denoted by cl(A) 
 

6.5  SELF ASSESSMENT QUESTION: 
 

6.1.6:SAQ: Suppose is a class of subsets of a non-empty set X which is closed under finite 

unions and arbitrary intersections. Show that  is a topology on X. 
Answer: Use De Morgan’s law :  

 and  

  

  

If I if finite and ;  

  

  
 

6.1.7: SAQ: If (X, d) is a metric space  Justify your 
answer. 
Answer: Let X be a set with at least two points and d be the discrete metric 
on X if ,  then  
Since the topology induced by this metric is the discrete topology every 
subset of X is open hence closed . Thus   

However  

Thus it is not necessarily true that in a metric space    
 
 



 

 
Topology 6.9                         Elementary Concepts… 
 

 

6.1.8: SAQ: In a metric space (X, d) show that{x} is a closed . 

Answer:  Let (X,d) be a metric space and x  X . If X = {x}, {x} is closed. Suppose {x}  X . 
Then \ \  
We show that . This holds since  

. Since {x} 

Then . This shows that X\x is an open set.  

Hence {x} is a closed set. 
 

6.6  SUGGESTED READINGS: 
 

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill 
Book Company, New York International student edition.  
 

Prof. L. Madhavi                                                                              



LESSON -7 

OPEN BASES AND OPEN SUB BASES 
 

OBJECTIVES: 

 Understand the definition of open bases. 
 Understand the properties of open bases. 
 Understand the definition of open subbases. 
 Understand the properties of open subbases. 
 Apply open bases and subbases to topological spaces. 

STRUCTURE: 

7.0  Introduction 
7.1  Open Bases and Open Subbases 
7.2  Separability and second countability 
7.3  Solutions to Short answer questions  
7.4  Model examination questions 

7.5  Summary  
7.6  Technical Terms 
7.7  Self Assessment Questions 
7.8  Suggested Readings 
 
7.0: INTRODUCTION :  
 
In the lesson , the first countability axiom, the second countability axiom are introduced and 
the famous lindelof’s theorem along with simple but important consequences are proved. 
Separability in relation to second count- ability is also discussed. 
 

7.1:OPEN BASES AND OPEN SUB BASES: 
 

7.1.1:Definition: An open base for a topological space X is a class of open subsets of X 
such that every open set in X is the union of class of sets in  . If  is an open base for X 
sets of  are called basic open sets. 

7.1.2:Proposition: Let (X,T) be a topological space and   T .  is an open base for (X,T) 
if and only if xG  Y there exists a B  such that xB G. 

Proof: Let  be an open base,  xG  T. By definition, there exists a class 
{Bi/iI}   . Clearly Bi  G. Thus there exists iI such  that xBi  G and Bi  . 
Conversly suppose this condition is satisfied. Let GT for each xG there exists a Bx   

xBx  G, {Bx/iG}   and clearly . Hence  is an open base for (X,T). 

7.1.3:Remark: Let us recall that for any class of sets B, T2(B) is the class of sets that are 

unions of members of B. Thus we may rephrase the definition of an open base as follows: 
A class of open sets  is a topological space (X,T) is an open base if and only if T2(  ) = 

Y. 
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7.1.4:Examples: Let X be a non empty set and Td be the discrete topology on X. For each 
xX, let Bx = {x}. Then  = {Bi/xX} is an open space for (X, Td)   

Reason: Let us recall that every subset of X is open in the discrete topology. 

Thus if G X, . 
Since BxxG, G is the union of a class of sets in  . 
Hence  is an open space for (X,Td). 

7.1.5:Example: For the real line R with the usual topology Td the class B of all open 
intervals(a,b) where aR and bR is an open base. 

Reason: By definition, G is an open set in the usual topology if and only if 
xG a x  > 0  . 
Ix  = (x -x   , x +x ) G. 
Clearly IxB and  

7.1.6:Definition: Let (X,T) be a topological space. A class Y of open subset of X is said to 
be an open sub base for (x , y) if the class B = T1(y) is an open base for (X,T) where T1(y) 

confute of finite intersections of members of Y i.e, AT1(y) such that . 

Elements of Y are called sub basic open sets in (x,y).  

7.1.7:Example:If aR write (–   ,a) = {x/xR and x < a} and (a,  ) = {x/xR and a < 
x}a < b; The class Y ={(a,b)/aR, b = or a = –  , bR} is an open sub base for the real 
line with the usual topology. 

Reason: We know that the class B = {(a,b)/aR, bR} is an open base for 
the space R with the usual topology. 
If aR and bR, (a,b) = (–  ,b) (a,  )T1(y) 
Further and  
Thus  and  are the sub basic open sets  
Hence (a,b)T1(y) 
Thus B T1(y), since B is an open base, T1(y) is also an open base. Therefore y 
is an open sub base for R. 

7.1.8:Theorem: Let X be any nonempty set and  be an arbitrary class of subsets of X, then 
 can serve an open sub base for a topology on X, in the sense that T2(T1 )) is topology on 
X. 

Proof: That T2(T1 )) is the topology on X containing   is proved in problem 5.1.19. By 
definition T2(T1 )) is the collection of all sets which are arbitrary unions of members of 
T1 ) hence T1 )is the open base for this topology. 
Thus  is an open base for this topology. 
 

7.1.9:Example: The collection 1  of all open spheres is an open base for the Euclidean 
topology on R2. 

Reason: By definition G  R2 is open in the Euclidean topology if xG 
 an r > 0  xSr (x)  G. Hence 1 is an open base for the Euclidean topology on R2. 
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7.1.10:SAQ: The collection B2 of all open rectangles is an open base and the collection of 

all open strips is an open sub base for the Euclidean topology on R2. 

Countability axiom: 

7.1.11:Definition: A topological space (X,T) is said to satisfy the first count- ability axiom 
or simply by first countable if every point in X has a countable open base (X,T) is said to 
satisfy the second countability axiom or simply be second countable if there is a countable 
open base for (X,T). 

7.1.12:SAQ: Every metric space is first countable 
Second countability axiom implies first countability axiom where as the reverse 

implication does not hold. Moreover a sub space of a first (or second) countable space is 
first ( or second) countable. These two types of conditions play an important role in 
reducing the number of open sets in test cases. 
We now prove the central fact about second countable spaces namely Lindelof’s theorem 
and its consequence which is mostly used. 

7.1.13:Lindelof’s Theorem: Let X be a second countable space. If a non empty set G of X 
is represented as the union of class{Gi/iI}of open sets then G can 
be represented as a countable union of Gis. 

 
Proof: Let  = {Bn / n  N}be a countable open base for X. 

Let J0 ={n  N / Bn  Gi} for some i  I such that Bn  Gi .Among all such i’s we fix one 
and denote this by in, ie., Bn   Since J0 is countable . Clearly {  / n  J0} is a sub 
class of {Gi / i  I}. We claim that  clearly . 
Let x G , then x  Gi for some i. Since P is an open base, there exists an integer n  1 such 
that x  Bn   Gi .Then n  J0  x  Bn     , by the choice of In. 
Thus .  
Hence . There fore  

7.1.14:Theorem : Let X be a second countable space. Then any open base for  X has a 
countable sub class which is also an open base. 
 
Proof : Suppose  ( X  ) is a topological space which is second countable and we are given 

a basis {Vi/iI} for  , indexed by a set I. We show that there is a countable subset I0 of I such 

that {Vi/iI0}is an open base for  . Since ( X  ) is second countable, there is a countable 
open base  = {Bn / n N} for  . For each n  N there is a countable subset In of I (by 

Lindelof’s theorem) such that . 
Let . Then I0 is a countable subset of I. 

We show that V = {Vi / i  I0} is an open base for  . Let us recall that for any class Y  P ( X 
).T2 (Y ) stands for the class of all sets which are unions of members of Y. Since  is an 
open base for  , T2= () =  . 
Since     
Hence Y = T2 ( B)  T2 (V ) . Since V  Y and Y is closed under arbitrary unions.  
T2 (V ) hence Y = T2 (V ). Thus V is a countable sub class which is an open base for 
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7.2: SEPARABILITY AND SECOND COUNTABILITY : 

7.2.1: Proposition : A second countable topological space is separable. 

Proof : Let ( X , ) be a topological space with a countable open base {Bn/ nN}. 

Let J = {n / Bn  }. 

For each n  J . Choose xn in Bn . The set H = {xn / n  J} is clearly countable. If x  X and 
V is any open set in X containing x, then there exists a n  N  x  Bn  V . So that xn V . 
Thus every neighborhood of x intersects H. Hence  i.e., H is dense in X. Thus X is 
separable. 

7.2.2: Remark : In general separability does not imply second countability (see excercise7) 
For metric spaces these two notions are equivalent as is evi- dent from the following 
theorem. 

7.2.3: Theorem : Every seperable metric space is second countable. 

Proof : Let X be a seperable metric space with metric d and A be a countable dence set 
we may enumerate the elements of A as (a1, a2,  ,an). 

For a fixed n, let  n = {Sr(an)/rQ, r > 0}, clearly  n is countable.  

Hence  is countable. We show that  is an open base for (X,d). 
Clearly elements of  are open spheres and hence are open sets. If V is any open set and 
xV, a > 0  S ( X )  V . Since A is dense,  an an S /3 (x) 
Choose rQ, r.0   /3 < r < 2 /3 
Since d(x, an) <  /3< r, xSr (an).  
ySr(an)  d(y,an) < r. 
 d(y, x)  d(y, an) + d(x, an) < r +  /3 + /3 = 

 y S (x). Hence Sr(an)   S (x).  
Thus x Sr (an)  S (x)  G.  
Since Sr(an) n   , it follows that GJ and xG,  a     xB G. 
Hence B is a basis for (X,d) 
Since B is countable, (X,d) is second countable. 
 

7.2.4:Example: The Euclidean space R with the usual metric is seperable, hence 
second countable. 
 
Proof: We use Archimedean principle which says that if   and  >0 there exists a 
natural number n such that n >  . 
As a consequence given a a  R, b  R, a < b there exists x  Q  a < x < b . 
From this it follows that if x  R and  0y Q  x< y < x so that ( x  x+ ) 
contains a point of Q other than x. If V is neighborhood of x. an > 0  ( x , x+   V 
. Since ( x , x+ ) contains a y Q {x}, y V  Q {x}. Hence x is a limit point of Q. 
Since this 
is true for every x  R, R    R . Hence R =   . Thus R is separable. 

7.2.5:Example : Rn with the Euclidean metric is second countable, hence separable. 
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Proof : We use the fact that if A1……….An are Countable then so is A1x……….xAn. Since 
Q is separable. Qn = Qx Qx……..xQ (n times) is countable. Let ; and 

V be a neighbourhood of x. 
Then  

Then .  Thus y  
x and y Sx)  V . Since every neighborhood of x contains a point of Qn other than x, x 
  . This is true for every x  Rn so that Rn     Rn hence Rn = . Hence Rn is 
seperable. 

7.3: SOLUTIONS TO SHORT ANSWER QUESTIONS : 

7.1.10:To prove that B2 is an open base we have to show that every open rectangle is an 

open set and for every open set G is R2 and x  G  an open rectangle R such that x  R  G 
. Towards this end it is enough to show that if 
R = (a,b) x (c,d) and x = (x1, x2) R , a   > 0  S (x)  R and if r > 0 and 
y  Sr ( x)   a rectangle S = ( ,  ) x ( , )  y  S  Sr ( x) . 
Let x = (x1, x2) (a, b) x (c, d)  a < x1 < b and c < x2 < d 

  

  
  

 similarly  that 
. Thus . 

Again , if  
 . The above argument 

shows that  contains a rectangle  containing y. 
Hence y  S  Sr ( x) . 

7.1.12: Let (X, d) be a metric space and x  X . Then {S1/n (x) / n  }is a countable 
collection of open sets which form an open base at x. For this let V be  a neighborhood  of x 
is the  induced topology  and   > 0, such that x  S (x)  V . 
If . Thus every neighborhood of x 
contains  for some . This completes the proof. 

7.4: MODEL EXAMINATION QUESTIONS : 

1. Define an open base for a topology  . Show that given any nonempty family of 
subsets of a nonempty set X there is a unique topology  on **** for which Y is an open 
sub base.  
2. State and prove Lindelof’s theorem. 
3. Show that every open base of a second countable topological space contains a countable 
sub family which is a base. 
4. Define first countable topological space and second countable topological space. Show 
that a second countable topological space is first countable but the converse is not true. Show 
that in a second countable topological space every open set is a union of a countable family 
of open sets. 
5. State Kuratowski’s closure axioms and prove that any closure operation “-” satisfying 
these axioms induces a topology  on X such that for any subset A of X, A =  A iff 
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. 
6. Show that in a topological space (X,  ), for any 

 
 
7. Is a metrizable space first countable ? Justify. 
8. Show that in any topological space (X,  ), int(A) is the “Largest” open set contained 
in A more precisely. 

(1) Int(A) is an open set,  
(2) int(A) A. If B is any open set  B  A, Then B  int( A) 

 
9. Let X be a nonempty set and consider the class  of subsets of X consisting of the empty 
set and all sets whose complements are countable. For definiteness let X = R, the real line. 

1) Is X first countable ? 
2) Is X second countable ? 
3) Find  when A is the set of even integers. 

10. Let (X,  ) be a topological space,  A  X . Show that A is dense in  when   is 
treated as a sub space of (X,  ). 
11. Let (X,  ) be a topological space and  A  X . Show that the following conditions are 
equivalent. 

1) A is closed and has no isolated points 
2)   = D(A) 

A X is said to be perfect, if A satisfy one of the above two conditions. 
12. Let C be the cantor set in [0,1] obtained by removing the middle on third at every 
stage. Show that C is perfect 
13. For any A X,  ) show that the int  
14. Show that    iff A contains it boundary. 
15. Let (X,  ) be a topological space for  A  x . Show that int  =   if and only if 

non-empty open subset disjoint from A. Such sets A are called no where dense sets. 
16. (a) Show that a closed subset a of (X,  ) is no where dense iff A1 is dense 
        (b) Consider that the real line with the usual topology 

(i) Is Q dense ? 
(ii) Is Q now where dense 

(iii) Is Q Closed 
(iv) Is Q open ? 

17. Show that the boundary of a closed set is nowhere dense. What is the boundary of Q 
in R with the usual topology ? 
18. Show that the set of isolated points of a second countable space is either empty or 
countable. 
19.Show that  (X,  ) is second countable and Y X is uncountable then D(Y)   
20. Let  (X,  ) be a topological space and  A  X . Show that boundary of  if and 
only if  
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7.5  SUMMARY: 

An open base is a collection of open sets within a topological space that can be used to 
construct all other open sets by taking unions of its elements. While an open subbase is a 
collection of open sets where taking finite intersections of its elements generates a base for 
the topology, essentially acting as a smaller building block for creating the full set of open 
sets 

7.6  TECHNICAL TERMS : 

 Base: A collection of open sets in a topological space that generates the topology. 
 Open Base: A base that consists only of open sets. 
 Base for a topology: A collection of open sets that generates the topology. 
 Subbase: A collection of open sets in a topological space that generates a base. 
 Standard Base: The collection of all open intervals in the real line is a base for the 

standard topology. 
 
7.7  SELF ASSESSMENT QUESTIONS: 

7.1.12:SAQ: Every metric space is first countable 

Answer:Let (X, d) be a metric space and x  X . Then {S1/n (x) / n  }is a countable 
collection of open sets which form an open base at x. For this let V be  a neighborhood  of x 
is the  induced topology  and   > 0, such that x  S (x)  V . 
If . Thus every neighborhood of x 
contains  for some . This completes the proof.  
  
7.8  SUGGESTED READINGS:  
 

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill 
Book Company, New York International student edition . 

 
Prof. L. Madhavi                                

 



 

LESSON –8 

WEAK TOPOLOGY 
 

OBJECTIVES : 

 The weak topology allows for more convergent sequences and compact sets than the 
norm topology. 

 The weak topology is a powerful tool for studying these. 
 The weak topology helps analyze convergence of sequences and series in infinite-

dimensional spaces. 
 The weak topology is useful in applications to optimization, quantum mechanics, and 

differential equations. 
 

STRUCTURE: 

8.0   Introduction 
8.1   Continuity 
8.2   Weak Topology 
8.3   Exercise 
8.4   Summary 
8.5   Technical Terms 
8.6   Self Assessment Question 
8.7   Suggested Readings 

8.0: INTRODUCTION :  
 
In this lesson, we first define partial ordered set, lattice, complete lattice and weak topology 
and prove the theorem that the collection of all topologies on X forms a complete lattice 
under the relation is weaker than. We then turn to our attention to prove properties of 
continuous functions real or complex functions defined on a topological space X. 
 
8.1: CONTINUITY : 

Definition : Let X,Y be topological spaces. A mapping f: X  Y is said to be continuous at 
x0 X if for every neighborhood V of f(x0 ) there is a neighborhood U of x0 .such that f(U) 
V. 
 
8.1.2 : Example : Let X be any nonempty set. Equip X with the discrete topology. If Y is any 
topological space and f: X→Y is any map and x0 is any point of X, f is continuous at x0 
because every subset of X is open with respect to the discrete topology and in particular for 
every open set V containing f(x0), U=f-1(V)  is an open set. 

 
8.1.3 : Note: Let  X,Y be topological spaces and f: X→Y be any map. f is said to be 
Continuous at every point of X if and only iff-1(V) is open in X for every open set V in Y. 
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8.1.4 : Definition : Let  X and Y be topological spaces and f:X→Y be a mapping. 

1) f is said to be continuous if f-1(G) is open in X,  open sets G in Y. 
2) f is said to be open if f(G) is open in Y  open sets G in X. 
3) f is said to be homeomorphism, if f is a bijection and is both continuous and open. 
4) f(X) is said to be a continuous image of X if f is continuous. 
5) f(X) is said to be a homeomorphic image of X if f : X Y is continuous, one-one and 
open. 

8.1.5 : Remark : Some authors prefer to define continuity of f in terms of continuity at every 
point of X. However 8.1.3 confirms equivalence of these two definitions. 
 
8.1.6 : Example :  If X is a nonempty set and   are respectively the indiscrete topology 

and discrete topology on X respectively then the identity map I: X X is clearly a bijection. 
 
              When the domain space X is equipped with the discrete topology every set in X is 
open in  . where as the only open sets in   are   and X. Thus 

           a)If X has more than one point I: (X, )→(X, ) is not continuous. 

           b)As mentioned in 8.4.1 : (X, )→(X, ) is continuous. 

           c)If X has more than one element and  and is nonempty so 

that I : (X, )→(X, ) is not open, hence is not a homomorphism. 
 
8.1.7 : Let (X, ) and (Y,  be topological spaces. For mapping prove that 
following 
are equivalent. 
                a)f is continuous. 
              b)f-1(F) is closed in for every closed set F in  

                c)  

8.1.8 :Theorem :Let X,Y be topological spaces.  be, an open base for X and  an open 

subspace for Y. Then the following are equivalent. 
a)  is continuous. 

b) (B) is open in X for every basic open set B in Y. 

c) (B) is open in X for every B  

Proof : (a) (b) is clear 

(b)  (c) since is an open base for  

(c)  (a): Let V be open in Y, x  X and =f(x)  V. 

Then since T1( ) is an open base for the topology on Y, BT1( ) such that YB V . 

Since B T1( ),  a finite number of sub basic open sets B1……..Bn such that B = . 

Since  for  by (c)  is open in X  i. 

Hence  is open X. 

Since y = , so that  

Thus  and G is open in X. 
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Further f(G) =  

Hence f is continuous at X. Since this holds f is continuous on X. 

8.2. WEAK TOPOLOGY : 

8.2.1:Definition :Let P be a non-empty set. A partial order relation in p is a relation which is 
symbolized by  and assumed to have the following properties. 

 
Following Properties: 

i) x  x for every x in P (reflexive) 

ii) x  y and y  x imply x=y (anti- symmetry) 

iii) x y and y  z, x  z (transitivity) if  is a partial order in P then (P, ) is called a 

partially ordered set. 

8.2.2 : Definition :Partially ordered set (L, ) is said to be a lattice. If for each pair of 
elements there exists a supremum and infimum in L. If a, b L  then the supremum of a and b 
is denoted by avb. The infimum of a and b is denoted by a b. 
 
8.2.3 : Definition :Let (L, ) be a lattice. If there exists an element denoted by I,L such that 

, then I is called a supremum of the all element of L. If there exists an element, 
denoted by O in L such that  then the element O is called the zero element in L. 
 
8.2.4 : Definition :A Lattice (L, ) is called a complete lattice, if every infinite subset of L 
has a supremum and infimum in L. 

8.2.5: Remarks : 

1.If (L, ) is a complete lattice then ‘’L’’ contains the zero element and the all element. 

2.A lattice (L, ) is a complete lattice is a lattice with all element I and every non-

empty subset of L has the infimum in L. 

8.2.6 : Definition : Let X be a non-empty set and let T1 and T2 be two topologies on X. We 
say that T1 weaker than T2 (or) T2 is stronger than T1  if T1 T2 . 
 
8.2.7 : Definition : Two topologies T1 and T2 on a non-empty set X are said to be comparable 
if either  T1 T2 (or)T2 T1 . 
 
 8.2.8 : Example :Let X= {a,b,c} and let T1 = {  

T2=  

Then T1 T2 T1 is weaker than T2 

Also,T1 and T2 are comparable 
If T3 =  then T1 T3 are not comparable 

We have T3 T2 

So,T3 is weaker than T2 

T3 and T2 are comparable. 
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8.2.9 : Theorem : Let X be a non-empty set. Then the collection of all topologies on X forms 
a complete lattice under the relation “is weaker than”. 
Proof : Let X be a non-empty set and let  be the collection of all topologies on X. Let 
T1=  Then T1 is a topology on X and this topology is called the indiscrete topology on 

X. 
T1 .  

Let TD be the class of all subjects of X.(i.e, the power set of x) TD is a topology on X and this 
topology is called the discrete topology on X  

 is non-empty. 

     Now define a relations’’ is weaker than’’ which is symbolized by the symbol  as 

follows:- 
If T1,T2  and . 

To prove that  is a partial order : 

i)Reflexivity : 

Let T  we have 

T  

 is reflexive on T 

ii)Anti-Symmetry: 

Let T1,T2  and suppose that 

T1  T2 andT2 T1 

T1 T2 and T2 T1 

T1=T2 

 is anti-symmetric on  

iii)Transitivity : 

Let T1,T2,T3  and suppose that 

T1 T2 and T2 T3 

T1 T2 and T2 T3 

 
 

 is transitive on . 

By all these properties ,   is a partial order on  and hence(, )  is a partially ordered set. 

To prove that(T, ) is a lattice : 

Let T1,T2  

T1 and T2 are two topologies on X. 

T1 T2 is a topology on X 

T1 T2  



Topology 8.5                                        Weak Topology 
 

We have T1 T2 T1 and T1 T2 T2 

 
 is lower bound of T1 and T2 

Let T3  be a lower bound of T1 and T2 

 and  

 and  

 

 
 is the greatest lower bound of T1 and T2 

Thus each pair or elements in  has a g.l.b in  

Let T1,T2  

Let A =  

Let T*=  

Since T1 T and T2 T  

We have Let T1  and T2  

 and  

 
Let T1 be an upper bound of T1 and T2 in  

 

 

 

 

 
 is the least upper bound of T1 and T2 

Thus each pair of element in  has and least upper bound in . 

 is a lattice. 

To prove that  is a complete lattice : 

We have T  TD T  

 
 is the all element in  

We have T1  T  

T1 is the zero element in  

Let B be a non empty sub collection of  

Then T*=  is the g.l.b of B. Thus, every non-empty sub class of  has g.l.b in  

    Hence ( ) is a complete lattice with the zero element T1 and all the element TD 
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              This completes the proof of the theorem. 

8.2.10 :Problem :  If f and g are continuous real or complex functions defined on a 
topological space X, then f+g, af and fg are also continuous functions. Further more, if f and 
g are real then f g and fg are continuous. 
 
Proof : We shall prove that fg is a continuous at an arbitrary point x0 X, Let  be given 

choose  such that  

Since f is continuous at x0 there exists a neighborhood G1 of X0 such that 

 
      Similarly there exists a neighborhood G2 of X0 such that 

then G is a neighbourhood of x such that 

 

 
=  

 

 
Therefore fg is continuous at every x0  X. 

Next, we shall prove that f  g is continuous. We first observe that the sets of the form A= 

(a, ) and B=(- ,b) form an open sub base for the real line and by showing that the inverse 

image of any set is open. 
We have  

                                     =  

This follows because the sets on RHS are f-1(a, ) are open sets of X (note that f and g are 

continuous functions and (a, ) is open). 

Therefore (f g)-1(A) is open. In a similar way we can prove that (f  g) is also continuous on 

X. 

8.2.11: Lemma : Let X be a topological space and le {f n } be a sequence of real or complex 
functions defined on x which converges uniformly to a function f converges on x, if all fn ’s 
are continuous, then f is also continuous. 
 
Sol : We shall show that f is continuous at an arbitrary point X0 in X. Since  

uniformly, given there exists an integer n0.Such that all , . 

Since is continuous and thus continuous at x0, There exists a neighborhood G of x0 such 

that for all . 

There fore 

 

 
              Hence the theorem. 
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8.3 : EXERCISE : 

8.3.1: Let X be a non-empty set and {Xi }be a non-empty class of topological spaces. If for 
each i there is given mapping fi of X into Xi denoted by T is the weak topology on X 
generated by fi

’s. 
 
a) Show that T equals the topology generated by the class of all inverse images in X of open 
sets in Xi ’s.  
b) If an open sub base is given in each Xi , show that T equals the topology generated by the 
class of all inverse images in X of sub basic open sets in the Xi ’s. 
c) If Y is a sub space of the topological space (X, ) Show that the relative topology on Y is 
the weak topology generated by the restrictions of fi ’s to Y. 
 
8.3.2 : In each of the following, we specify a set {fi } of real functions defined on the real line 
R. In each case given a complete description of the weak topology on R generated by the fi’s 
 
 a) {fi } consists of all constants functions. 
 b){fi } consists of a single function f, defined by 
           f(x) =0, if x 0 and f(x) =1, if x > 0.  
c) {fi } consists of a single functions f defined by f(x) = –1, if x<0,f(0)=0 and  
f(x) =1, if x > 0. 
d) {fi } consists of a single function f, defined by f(x) =x for all x.  
  
e){fi } consists of all bounded functions which are continuous with respect to the usual 
topology on R.  
f){fi } consists of all functions which are continuous with respect to the usual topology on R. 
 
8.3.3: Let X,Y be topological spaces Z X. If f : X Y   is continuous . 
a) The restriction g of f defined by g(x) = f(x) for x z  is continuous on Z 
b) f : X f(X) is continuous. 

8.3.4 : Let X,Y,Z be topological spaces; f : X Y and g : Y Z be continuous show that g o 
f is continuous. 
8.3.5 :  Give an example of a continuous map which is not open. 
8.3.6 :  Give an example of an open map which is not continuous. 
8.3.7 :  If f:X→ Y is a bijection show that f is open if and only if f1 is continuous. 
8.3.8 :Let n : fi :  be a mapping for 1  

Define f(x) =(f1 (x),f2 (x),.............,f n (x)) show that f is continuous if and only if for each I, 
1  is continuous. 

 
8.3.9 : If X and Y topological spaces write X ~Y is there if a homeomorphism from X onto 
Y. Prove the following: 

a) X~X  
b)X~Y  Y~X 
Because of this symmetry X and Y are said to be homeomorphic  if X~Y   
c) X~Y and Y~Z X~Z. 
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8.4  SUMMARY : 

Weak topology is a mathematical concept that describes the weakest topology on a space that 
makes certain functions continuous. It’s a key concept in functional analysis, and is often 
used to study linear operators and functional. 
 
8.5  TECHNICAL TERMS : 
 
 Weak Convergence: Convergence of a sequence of function in the weak topology. 
 Weak Limit: The limit of a sequence of functions in the weak topology. 
 Weak Continuous: A function that is continuous with respect to the weak topology. 
 Indiscrete Topology, also known as the trivial topology, on a set X is the topology that 

consists of only two open sets. 
 
8.6  SELF ASSESSMENT QUESTIONS: 
 
1. If τ1 and τ2 are two topologies on non-empty set X, then is topological space.  
a. τ1 ∩ τ2  
b. τ1 ∪ τ2  
c. τ1 \ τ2  
Ans: a 
 
2. Which of the following statements are true for a metric topology (X, d). 
 a. arbitrary intersection of open set is open 
 b. arbitrary union of closed set is closed 
 c. arbitrary union of open set is open  
Ans: c 
 
3. What is the closure of the set S =  1 − 1 r˙ : n ∈ N in usual topology on R 
 a. (0, 1)  
b. [0, 1]  
c. None of these 
Ans; c 
 

4. An indiscrete topology has only elements  
a. 1  
b. 2 
 c. 3 
Ans: b 
 
5. Which of the following is true for discrete topology  
a. complement of any set if open is open  
b. every set is a open set  
c. both (a) and (b) 
Ans: c 
 

6. Which of the following is true for discrete topology on X  
 a. the topology coincides with the power set P(X) 
 b. Weaker than indiscrete topology on X 
 c. neither of (a) and (b) 
Ans: a 
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7. Which of the following is true for a discrete topology on X  
a. Weaker than any topology on X  
b. only convergent sequences in discrete space are sequences that are eventually constant  
c. both (a) and (b 
Ans: b 
 
8.7  SUGGESTED READINGS: 

1.  Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book  
Company, New York International student edition. 

Prof. L. Madhavi                                
                                                                                     

 



 

LESSON -9 

N147 COMPACT SPACES 
OBJECTIVES: 

The objectives of this lesson are to. 
• To understand the concepts of open subsets and open covers in a topological space. 
• To understand the concept of compact sets. 
• To understand the concept of closed subspace of a topological space. 

STRUCTURE: 

9.0: Introduction 
9.1: Compactspaces 
9.2: Model examinattion questions 
9.3: Exercise 
9.4: Summary 
9.5: Technical terms 
9.6: Answers to self assessment questions 
9.7: Suggested readings 

9.0: INTRODUCTION: 
 

It is well known that closed and bounded sets of real nembers have important properties in 
analysis. For example continuous real-valued functions defined on closed and bounded sets 
of real numbers are bounded and uniformly continuous. Incontrast to this, the function 
defined on the open unit interval (0,1) by f(x)= is neither bounded nor uniformly 

continuous. 
An abstractization of this important property possessed by closed and bound sets of real 

numbers gives rise to the concept of compactness for topological spaces. 

9.1: COMPACTSPACES: 

 

9.1.1:Definition: Let X be a topological space. A class  of open subsets of X is said to 
be an open cover of, X if X = . A sub class of an open cover which is itself an open 
cover is called a subcover. A topological space X is called a compact space if every open 
cover of X has a finite subcover. A subspaceYof a topological space X is said to be compact 
if Y is compact as a topological space in its own right. 

9.1.2:Example: 

1. Every indiscrete space is compact (Ex:5.1.4). 

Solution: If X is an indiscrete space , since X has only two open sets, every open cover has a 
finite subcover. Thus X is compact. 
2. Let X be any infinite set and let  Then T is a 
topology on X, called cofinite topology; The space (X,T) is called a cofinite topological 
space.This cofinite topological space is compact (Ex : 5.1.6). 

Solution: Let  be an open cover of X. Since X =  . Some   is none empty say 
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. Then X  is finite. Let X  . Suppose  is for . Thus 
X = ……  . So  is a finite subcover. Hence X is 
compact. 
3. Every finite topological space X (i.e|X|<) is compact. 

Solution: Since X has only a finite number of open sets, every open cover has a finite sub 
cover. 

X is not compact. 
4. The open unit interval (0,1) with usual topology is not compact. 

Solution: For each positive integer n, Let  Then  is an open cover of 

(0,1), but it has no finite subcover (0,1) is compact. 
5. The set R of all real numbers with usual topology is not compact. 

Solution: Clearly . For each positive integer n, let . 
Then  is an open cover of , but has no finite subcover. Therefore  is not compact. 

9.1.3: SAQ :Let Y be a subspace of a topological space X. Then Y is com- pact if and only if 
for every class of open sets in X such that  there is a finite subclass 

  such that  
We now prove two simple, but useful, theorems. 

9.1.4:Theorem: Any closed subspace of a compact space is compact. 

Proof: Let Y be a closed subspace of a compact space X . Let  be a Class of open sets 
in X such that . 
Then , where Y 1 is the complement of Y in X. 

 . Since Y is closed, Y 1 is open. 
Hence the class   is an open cover of X. Since X is compact, 
There exists a finite subclass {Hi1

,……….,Hin}  of   such 

that . 
Hence  
By SAQ 9.1.3, Y is compact. 

9.1.5 :Theorem: Any continous image of a compact space is compact. 

Proof : Let  be a continous mapping of a compact space X into an arbitrary 
topological space Y. We claim that f(X) is a compact subspace of Y. Let   be a class of 
open sets in Ysuch that . Since f is continous and Hi is open in Y.  is 
open in X, for every  .Therefore  is a class of open sets in X.  

Also  
since X is compact, there exists a finite subcover  of . 
Hence  and this implies that . Thus 
f(X) is compact. 

9.1.6 : Remark: Let us recall if X is a set and  is a class of subsets of X, then we have 
that  and,  
We note the following : 
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 is a covering of X  
  

  
  

We also note that a subset A of a topological space X is open iff its compliment AI is closed. 
The following theorem is an easy consequence of the definition of compactness of a 
topological space. 

9.1.7 :Theorem : A topological space is compact every class of closed sets with 
empty intersection has a finite subclass with empty intersection. 

9.1.8:Remark: In remark 9.1.6, it was observed that if {Ai} is a class of  Subsets of a set X 
then is a covering of X if and only if  . As a consequence of this we have 
that the class {Ai} is not a covering of X if and only if  

9.1.9 :Definition : A class  of subsets of non-empty set X is said to have the finite 
intersection property (simplify f.i.P), if every finite subclass of  has non empty 
intersection. 

9.1.10:Theorem : A topological space is compact every closed sets with the finite 
intersection property has non-empty intersection. Let us recall that an open base for a 
topological space X is a class of open sets with the property that every open set is a union of 
sets in this class . 

9.1.11: Definition : Let X be a topological space .An open cover of X whose sets are all in 
some given open base is called a basic open cover . 

9.1.12: Remark: Sppose X is a compact space. Since every basic open set is an open set, 
every basic open cover is an open cover and hence it has a finite subcover. We prove the 
converse part in the following. 

9.1.13: Theorem: Suppose  is an open base for a topological space X. If every basic 
epen cover by sets from  has finite subcover, then X is compact. 

Proof :    Let be an open cover of X. Since . Is an open base, each Gi is a union of 
sets from . So there is subset  such that . Put . 
Therefore . Thus  is a basic open cover of X. 
By hypothesis, there exists a finite subclass  of such that . 
Now for each  , there exists  such that . So 

and hence . Thus X is compact. 

9.1.14:Definition: Let X be a topological space. A class {Fi} of closed subsets of X is called 

a closed base if the class  of all complements of its sets is an open base of X. Sets Fi are 
called basic closed sets. 

Theorem 9.1.13can be restated as follows. 

9.1.15:Theorem: A topological space is compact if every class of basic closed sets with the 
finite intersection property has non-empty intersection. 
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i 

9.1.16:Definition: Let X be topological space. A class {Si}of closed subsets of X is called a 

closed subbase, if the class  of all complements of its sets is an open subbase. 

9.1.17:Remark: Let us recall that an open subbase is a classes of open subsets of a 
topological space X whose finite intersections from an open base. This open base is called the 
open base generated by the open subbases. From the definitions 9.1.14 and 9.1.16, it is clear 
that the class of all finite unions of sets in a closed subbase C is a closed base. This is called 
the closed base generated by the closed subbase C. 
          We now prove a criterion for a topological space to be compact in terms of subbasic 
closed sets. 

9.1.8: Theorem: A topological space is compact if and only if every class of sub basic closed 
sets with finite intersection property has non-empty intersection. 

Proof: Let X be a topological space. Since very subbasic closed set is a closed set, it follows 
from theorem 9.1.10 that if X is compact then every class of sub basic closed sets with f.i.p. 
has non-empty intersection. Conversely suppose that every class of subbasic closed sets with 
f.i.p has nonempty intersection, Let be a closed subbase and let d be the 
closed base generated by this subbase. So, each Bi is a finite union of . By theorem 
9.1.15, to prove the theorem it suffices to show that every class of basic closed sets from 

 with f.i.p. has non-empty intersection: So, let  be a class of Bi’s with f.i.p. We 

have to show that Let1be the family of all classes of Bi’s which contain 
 and have the f.i.p. Since the class is in1, the family 1 .Then 1is a 

partially ordered set with respect to class inclusion. Let {Bi} be a chain in 1. Put  

Since each BN is a class of  , is also a class of  . Let  be a finite BN class of 
sets in B, contained in some BN. Since BN has the f.i.p  Since {BN} is a chain. 
The finite class  so B has the f.i.p. Therefore  and is an upper bound of  BN . 
By Zorn’s lamma,  has a maximal element. Let  be a maximal clement in  Since 

 contains  , We have that . So, it suffices if we show that 
. Now consider the class . Each Bk is a finite union of sets in  

for instance let Bk=S1U...........USn. It now suffices to show that at least one of the sets 
S1....,Sn belongs to (*) the class  . For, if we obtain such a set  for each Bk , then 
the resulting class is a class of subbasic closed sets. Since  is a  Since 

 we prove (*) by contradiction. We assume that each of the sets S1……Sn is not in 
the class {Bk}. Consider S1. Since each subbasic closed set is a basic closed set, S1 is a basic 
closed set. 

Since S1 is not in the class {Bk} the class  contains the class  
poperly. By the maximality property of  fails to have the f.i.p. So there exists 
a finite subclass  of  such that  if we do this process for each of 
the sets S1……..Sn we get finite subclasses ………  of  such that 

. for  put ……… . Now  is a finits subclass of 
 such that ……. . 

There fore  is a finite subclass of  with empty intersection. This 
contradicts the finite intersection property of the class . Therefore one of the sets 
S1……,Sn belongs to the class  as defined. 
 By remark 9.1.8. the above theorem can be restated as follows. 
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9.1.19: Theorem: A topological space is compact if every subbasic open cover has a 
finite sub cover. 

9.1.20: SAQ: Let X be a topological space and Y be a subspace of X If is an open 
subbase for X then the class where ,  ,is an open subbase of 
Y. We now prove the famous Heine-Borel theorem, 

9.1.21:Theorem: (The Heine - Borel theorem) Every closed and bounded subspace of the 
real line is compact. 

Proof: Let E be a closed and bounded subspace of the real line R. E is bounded E [–n,n] 
some positive integer n. Since E is closed in R, it. Is also closed in [-n,n]. By theorem 9.1.4, to 
show that E is compact, it suffices to show that every interval of the form [a, b] is compact. If 
a = b, then [a, b] = {a} and hence it is compact, because every finite space is compact. So, we 
may assume that a<b. Clearly the class of all intervals of the form (c,+) and (-,d). where c and 
d are real numbers is an open base for R. By SAQ 9.1.20 by droping the empty set, the class 
or all intervals of the form [a,d) and [c,b] where c and d are real numbers such that a < c < b 
and a < d < b is an open subbase for [a.b], Therefore the class of all interals of the form [a,c] 
and [d,b], where a < c, d < b is a closed subbase for [a,b]. Let  be 
a class of sub basic closed sets with f.i.p. It suffices to show that the intersection of all sets in 
Y is non empty. 

If Y contains only intervals of the form [a,ci] then the intersection contains a. Similarly Y 
contains only intervals of the form [di, b], then the intersection contains b. So, we may 
assume that Y contains only intervals of the form both the types. Define Define 

Clearly . We complet the proof by showing 
that . Suppose that  for some i0. Then , is not an upper bound of the 
defining set of d. 

 

There exists a  such that . Thus . This contradicts the 
f.i.p of Y. This completes the proof. 

9.1.22: SAQ: Prove the converse of the Heine - Borel. theorem: Every compact subspace the 
real line is closed and bounded. 

9.1.23: Definition: A topological space is said to be countably compact, if every countable 
open cover has a finite subcover. 

9.1.24: SAQ: Prove that a second countable space is countably compact it is cumpact. 
 

9.2: MODEL EXAMINATTION QUESTIONS; 

1. Prove that any closed subspace of a comact space is compact. 

2. Prove that any continuous image of a compact space is compact. 

3. Prove that a topological space is compact if and only it every class of basic closed sets  
with the f.i.p has non-empty intersection. 

4. Prove that a topological space is compact if and only if every sub basic open cover  
has a finite subcover. 
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5. State and prove the Heine - Borel theorem. 
 

6. Prove that every compact subspace of the real line is closed and bounded. 
 

9.3: EXCERCISE: 

1. Prove that a compact subspace of a metric spuce is closed and bounded. 
2. Let X be a topological space. If Y1and Y2are compact subspaccs of X, prove That 

is also a compact subspace of X. 
3. If {Xi} is a non-empty class of compact subspaccs of X each of which is closed and if 

 is non-empty. Show that  is also a compact subspaces of X. 

4. Show that a continous real or complex function defined on a compact space is 
bounded. 

5. Show that a continuous real function defined on a compact space X attains its 
infimum and its supremum. 

6. If X is a compact space, and if {fn} is a monotone sequence of continous real 

functions defined on X which converges pointwise to a continuous real funtion f 
defined on X. show that {fn} converges uniformly to f. 

7. Prove9.1.6. 
8. Prove that the class of intervals of the form (c,)or(–,d) where c, d are real 

numbers is an open base for R. 

9.4  SUMMARY: 

We learnt that the open subsets and open covers in a topological space. A closed 
subspace of a topological space. We have proved that closed subspace of a compact 
space is compact and closed and bounded subset of Euclidean space is compact. 

9.5  TECHNICAL TERMS: 

1. Finite subcover; A finite collection of open sets that cover a space. 
2. Open cover; A collection of open sets that cover a space. 
3. Sub cover; A subcollection of an open cover that still covers the space. 

9.6  ANSWERS TO SELF ASSESSMENT QUESTIONS: 

9.1.4: Suppose that Y is a compact subspace of X. Let  be a class of open sets in X 
such that . 

Then  , is an open cover of Y. Hence, there exists a finite subcover, say 
 Therefore  

 
Since every open set G in Y can be written as , where H is open in X, the converse 
part can be proved in a similar way. 

9.1.11: Let H be any non-empty open set in Y and . Then , where G is open 
in X. Since  , there exists  in   such that .Then, 
clearly .  is an open subbase for Y. 
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9.1.13: Let Y be a compact subspace of the real line R. For each positive integer n, In = (–n, 
n) Then,  is a class of open sets in R such that  since Y is compact, there 
exists positive integers ni,…….nk such that  . Let n be the maximum of 
ni,….nk. Then  is bounded. To show Y is closed it suffices to 
show that its complementary Y1 is open. Let . For each . Since  , there 
exists neighbourhoods Vx of x and  of x0 such that  clearly  . Since Y 
is compact, there exists xI,……,xm  y such that . Let  be the 
corresponding neighbourhoods of x0. Put  and . Then 

 for some . The  and hence 
. Thus Y1 is open. 

9.1.24: Let X be a second countable space. Since every countable open cover is an open 
cover, it follows that if X is compact, then ‘it is countably compact. 
Conversely suppose that X is countably compact. Let  be an open cover of X. 
Then  . By Lindelof’s Theorem there exists a countable subclass ……} such 
that  thus  is countnble open cover of X. by hypothesis. There exists a 

finite subcover, say, ……,  . Since this is a finite subcover of   we have 
that X is compact. 

9.7  SUGGESTED READINGS: 

1. Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book 
Company, New York International student edition. 

 
Dr. V. Amarendra Babu 



 

LESSON-10 

PRODUCT SPACES 

OBJECTIVES: 

The objectives of this lesson are to. 
 To understand the concepts of the product topology on a product space. 
 To understand the concepts of the subspace topological space. 
 To understand the concepts of a open base for a topology. 

STRUCTURE: 

10.0: Introduction 
10.1: Product space 
10.2: Model examination questions 
10.3: Exerciscs 
10.4  Summary 
10.5  Technical terms 
10.6  Answers to self assessment questions 
10.7  Suggested readings 

10.0: INTRODUCTION: 
 
In this lesson we introduce the notions of product toplology and product spaces. We 

define these notions initially for two topological spaces for a better understanding and prove 
that the usual topology on the Euclidean plane R2 is precisely the product topology. We then 
extend these notions to arbitrary class of topological spaces. We prove the main theorem of 
this lesson, namely the Trychonoff’s theorem. As an application of this theorem we obtain the 
General- ized Heine-Borel Theorem. We also define the notion of locally compact space and 
some examples of these spaces are given.We obtain an equivalent condi- tion for a 
topological space to be locally compact. 
We begin with the notions of product topology and product space for two topological Spaces. 

10.1: PRODUCT SPACE :  

Let X
1 and X

2 be topological spaces. Let us recall that the Cartesian product of the sets X
I 

and X
2 is the set of all ordered pairs (x

1
,x

2
) with x

2
X

2 
and x

1
X

l 
We denote it.by X

1
x 

X
2
Suppose X= X

1
x X

2
.Let S be the class of all subsets of X of the form G1 x X2 and X1x G2  

where G1 and G2 are open subsets of X1 and X2 respectively. The topology on X. generated 
by the class S is called the product topology. The open sets in the product topology are the 
unions of finite intersections of sets in S. The set X equipped with the product topology is 
called the product space or the product of the spaces X1 and X2.The product topology has S as 
an open subbase. 

lt is clear that (G1x X2) (X1x G2) = (G1 X2) x (X2 G2) = G1x G2There fore the open 

base generated by S is the class of all subsets of the form G1 x G2. Where G1and G2are open 

in X1and X2 respectively. 

Define mappings Pi: X→xi by Pi(x) = xi, i =1,2 ....................... for all (x1\,x2) X, 
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P1,P2 are called the mappings of projection. 

let us recall that if X is non-empty T1and T2 are topologies on X such that T1 T2 we say 

that T1, is weaker than T2. Further, the family of all topologies on X is complete lattice with 

respect to the relation is weaker than. 

10.1.1: Theorem: Let X1 and X2 be the topological spaces and let X be their product space. 

Then the projections pi, for (i) = 1,2 are continuous. Moreover the product topology is the 
weakest topology for which the projections are continuous. 

Proof: If G1 is an open set in X1 then p–1(G1) = G1 x X2.Which is a subbasic open set X, so 
p1 is continuous. Similarly p2 is continuous. Suppose T1 is a topology on X for which the 

projections p1 and p2 are continuous. Then for each pair of open sets G1 and G2 and X1 and 

X2 respectively, the set  must be 

open in T, Since the projections are continuous with respect to T. Thus every set which is 
open in the product topology must be open in T. 

10.1.2: Definition: A mapping from a topological space X into a topolclgical Space Y is 
called an open mapping, if   is open in Y whenever G is open in X. 

10.1.3: SAQ: Prove that the projections P1and P2are open mappings. Let us recall that the 

Euclidean plane R2 is a normed real linear space, where R2 is the set of all ordered pairs (xl, 

x2) of real numbers, under coordinate wise operations and norm  

                      given by . 

10.1.4: Theorem: The usual topology on the Euclidean plane R2 is precisely the product 
topology of the usual topologies on R taken twice . 

Proof: we know thut the, function d defined by                                                            

 
is a metric on R2. We have to show that the topology induced by the metric d is precisely the 
product topology. Suppose G is a subset of R2 which is open with respect to the metric d, and 
let . Then there exists an such that the open sphere . Let 

 and  which are open sets in R containing r and s respectively. We assert 

that V x W G and this will show that G is open in the product topology. If (x,y) V x W, 
then x V and ; that is  and  . 

Thus d(r,s),(x,y)  and so (x,y) (r,s)  G, 

as desired. 

Now suppose G is a subset of R2 which is open with respect to the product 
topology, and let (x.y)  G. Then there exists open sets V and W such that (x,y)  V x W  
G. Thus x  V and y  W, so there exist  such that  and 

. Let  min- { }, We claim that  which will 

show that G is open with respect to the metric d, since  Now 

if (r,s)  then  and 
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, so (r,s) .  as desired. 
We now prove that the product of two compact spaces is compact. 

10.1.5:Theorem; If X and Y are compact spaces, then their product space X x Y is also 
compact. 

Proof: Let be an open covering of X x Y. We choose an x0 in X and Consider {x0} x 
Y. Corresponding to each y in Y, there is a   such that  Then there 
exists a basic open set Uy x V(y) such that  
The class    is an open covering of Y. Since Y is compact there exist y1…...,ym Y 

such that . LetUy1,.....,Uym. The corresponding neighbourhoods 
of x0. Put U(x0) …… . Then we  have U(x0) x V(yr) . for r  
1……m and so U(x0) x Y …… . It follows that corresponding to each x 
in X there is a neighbourhood U(x) of x and there are finitely many elements 

 in  such that . 

Now the class  is an open covering of X Since X is compact, it follows 

that there are elements x1,…..,xn, in X such that . So we have 

 X x Y  

Thus is a finite sub covering of X x Y. Therefore X x Y is compact. 

10.1.6: SAQ: Prove that if X and Y are topological spaces such thut their product space X x Y 
is compact. then X and Y are compact. 

We now extend the notion of product topology to arbitrary class of topological spaces. Let 
us recall that the Cartesian product   of anon-empty class  of sets  is the set of 
all mappings f of I into  such that f(i)  for every . If  then f is 
denoted by  , where f(i)  xi for each i . For each i , the projection mapping pi 
is the mapping from  into Xi defined by  for every  . 

10.1.7: Definition:  

(i) Let be a non-empty class of topological spaces and let X =  be the Cartesian 
product of the sets  For each , let Pi be the projection of X onto Xi. Let S be 

the class of all subsets of X of the form, S  where  and Gi is an open subset 
of Xi. The topology on X generated by the class S is called the product topology. The set 
X together with the product topology on it is called a product space of the product of the 
spaces  

(ii) A subset of X is open with respect to the product topology if and only if it is a union of 
finite intersections of sets in S. It is clear that S is an open subbase for the product 
topology and is called the defining open subbase. 

(iii) A sub set B of X is in the defining open subbase , for some  and 
some open subset Gi of  Xi  , where, Gi = Xi for  and Gi is an open 
set in Xi , where Gi is open subset of Xi which equals Xi for all i’s but 

one. The class of all complements of open sets in the defining open subbase- namely, the 
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class of all products of the fonn , where Fi, is a closed subset of Xi which equals Xi 
for all i’s but one - is called the define closed subbase . 

(iv) The open base generated by the defining open subbase, that is, the class of all finite 
intersections of Sub basic open sets, is called the defining open base for the product 
topology. A subset G of X is in the defining open base if and only  if  it is of the form G 

,where Gi is an open subset of Xi which equals Xi for all but a finite number of 
i’s. 

As in theorem 10.1.1 one can prove that all the projection mappings Pi are 

continuous and the product topology is the weakest topology for which the projections are 
continuous. Also it is clear that all the projection mappings are open. 

10.1.8: SAQ: Let f be a mapping of a topological space X into a product space . Prove 

that f is continuous pi of is continuous for each projection Pi· 

 

10.1.9:Definition: Let X be anon-empty set, let {Xi) be a non-empty. class of topological 

spaces, and for each i let fi be a mapping of X into Xi. Note that if X is given its discrete 

topology, then all the fi’s are continuous. The intersection of all topologies on X with respect 

to each of which all the fi’s are continuous is called the weak topology generated by the fi’s. 

It is clear that this is the topology on X which makes all the  s continuous and it is the 
weak topology for which all the s are continuous. 

10.1.10: Remark: in view of the above definition. il is obvious that if {Xi} is a non-empty 

class of topological spaces and if X = PiXiis their product space, then. the product topology 

on X is the weak topology generated by the set of all projections .We now prove the main 
theorem of this lesson. 

 

10.1.11:Theorem: (Tyconoff’s theorem) Let {Xi}iϵI be a non-empty class of topologlical 
space and let X=Piϵ1Xi be their product space. Then X is a compact if and only if eache 
space Xi is compact. 

Proof: It X is compact, then each space Xi compact space the projections are continuous 

and onto. Hence, suppose that each space Xi is compact. Let {Fi}iϵI be a non-empty class 

of closed sets from the defining closed subbase for te Product topology on X . Therefore 
each FJ is a product of the form FJ=PiϵI  Fij, where Fij is a closed subset of Xi which 

equatls Xi for all i’s but one. We assume that the class {Fj}jϵJ has the finite intersection 

property. To show X is compact, It suffices to show that . For a fixed 
iϵI,we show that the class {Fij}jϵJ , all are closed subsets of Xi, has the finite 

intersection property. 

If {Fij1........Fijn} is a finite subclass of {Fij}jϵJ then the corresponding subbasic 

closed sets form a finite subclass . Since  has the finite 
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. 

intersection property, we have that . Choose a point x in . 
suppose  where  for all i. For 

, . Therefore  and so 
. Thus the class  has the finite intersection propert. Since Xi 

is compact, . Choose point ai in . Since  was arbitrary, we have 
that  for all i. put a  . Thus  for all I and for all j 

 for all j   for all , as desired. 

10.1.12: SAQ : Show that the relative topology on a subspace of a product. space is the 
weak topology generated by the restrictions of the projections to that subspace. 

Let us recall that the n-dimensional Euclidean space Rn is the normed real linear 
space, where Rn is the real linear space of all ordered n-tuples x = (x1…..xn) of real numbers 
under co-ordinatewise operations and the norm is given  . The 
topology on Rn obtained from the norm is called the usual topology. As in theorem10.1.4,one 
can prove that the product topology on Rn is precisely the usual topology. 

 We now prove an important consequence of Tychonoff s theorem namely the 
‘Generalized Heine-Borel theorem 

10.1.13: Definition: Let Rn be the n- dimensional Euclidean space. If (ai, bi) is a bounded 
open interval or, the real line for each i=1..........n, then the subset of Rn defined by is called 
an open rectangle in Rn, Similarly if [ai, bi] is a closed interval on the real line for i=1….n 
then  is called a closed rectangle in Rn. 

10.1.14:Theorem: (The Generalized Heine-Borel theorem) Every closed and bounded 
subspace of Rn is compact. 

Proof: Let E be a closed and bounded subspace of Rn, Since E is bounded, there exists a 
real number K > 0 such that K for all xE. If x = (x1…….xn)E, then 

 and hence  for all i. 

Thus  , where ri = k for all i. Since E is closed in Rn, it is also closed in 
the subspace  

Thus E is a closed subspace of the closed rectangle   .To show E is compact it 
suffices to show that each closed rectangle is compact as asubspace of Rn  

Let  be a closed rectangle in Rn, Each coordinate Space [ai, bi] is compact by 
the Heine-Borel theorem. Therefore, by Tyehonoff’s theorem. 

  is compact with the product topology. So to show that X is compact as 
a subspace of Rn, if suffices to show that the product topology on X is the same as its relative 
topology as a subspace of Rn. By the above remarks, the product topology on Rn is the same 
as its usual topology. By SAQ 10.1.12 the relative topology on X is precisely the weak 
topology generated by the restrictions of the projections toX. It is clear that the restrictions of 
the projections on Rn to X are precisely the projections on X. Therefore the relative topology 
on X as a subspace of Rn is precisely the product topology on X. This is the desired result and 
the proof of the theorem is we now discuss about the desired complete. result and the proof of 
the theorem is complete. 
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10.1.15: Definition: A topological space is said to be locally compact if each of its points has 
a neighbourhood whose closure is compact. 

10.1.16: Examples: 
(i) Every compact space is locally compact. For, if X is a compact space and if  xX, 

then X itself is a neighborhood of x such that  = X is compact. Thus X is locally 
compact.The following example shows that every locally compact space need not be 
compact. 

(ii) Let Rn be the n-dimensional Euclidean space. If xRn and if Sr {x) is any open sphere 
centered on x then Sr (x) is a neighborhood of x. Since the closure  is closed 
and bounded. by the Generalized Heine Borel theorem,     is compact,Henee Rn 

is locally compact. But Rn is not compact. 
(iii) Every discrete space is locally compact. Let us recall that a class of 

neighborhoods of a point is called an open base at the point if each neighborhood of 
the point contains a neighborhood in this class. 

We now prove a necessary and sufficient condition for a topological space to he locally 
compact. 

10.1.17:Theorem: A topological space is locally compact if and only if there is an open base 
at each point whose sets all have compact closures. 

Proof: Let X be a topological space, Suppose that X is locally compact. Let x be a point in X, 
Let  be the class of all neighborhoods of x whose closures are compact Since X is locally 
compact the class  . is non-empty,We prove that  is an open base at x. Let G be any 
neighborhood of x. Since X . is locally compact. there is a neighborhood H of x such that its 
closure  is compact. 

Clearly G H is a neighborhood of x and its closure  is compact, since  
is a closed sub space the compact space (theorem 9.1.4), Thus G H  . 
such that x G  H  G . Therefore   is an open base  at x whose set all have compact 
closures. Since X is a neighborhood B of x in  such that  . Now B   implies 

 is compact. Thus X is locally compact. 

Conversely suppose that there is an open base at each point whose sets all have compact 
closures. Let x X, then there exists on open base. 

10.1.7: SAQ: Let Px : X x Y→ X be the projection mapping. Then Px is continuous and onto, 
Since continuous image of a compact space is compact. it follows that Px (XxY) =X is 

compact. Similarly Y is compact. 

10.1.8: SAQ: Suppose f is continuous. For each i. the projection mapping    is 
continuous. There fore P of is continuous. Conversely suppose defininig open subbase of the 
product topology on  . Then  , for some i and some open set Gi in X i. 

Therefore  is open, since Pi of is continuous. 

Thus f is continuous. 
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10.2: MODEL EXAMINATION QUESTIONS: 

1. Prove thut the usual topology on the n dimensional Euclidean space Rn is the same 
as the product topology on it. 

2. Slate and prove Tychonoff’s theorem. 
3. State and prove Generalized Heiene - Borel theorem. 
4. (a) Define a locally compact space. Prove that every compact space is locally 

compact. Is the converse true. Justify your answer. 
(b) Prove that a topological space is locally compact if and only if there is an open 
base at each point whose sets all have compact closures. 

10.3: EXERCISCS: 

 

1. Let X and Y be topological space. If Y is compact, prove that projection mapping of X x Y 
onto X is a closed mapping (Let A and B be topological spaces. A mapping f:A→B is 
called a closed mapping if f(F) is closed in B wherever F is closed in A) 

2. Prove that if X and Y are metric spaces with metrics d1 and d2 respectively then the 

mapping d defined by  d ((a. b), (c,d))  is a metric on X x Y 
which induces the product topology.  

3. Let X be a metric space with metric d. Prove that d is a continuous mapping of X x X 
into R.  

4. Prove that a closed subspace of a locally compact space is locally compact.  
5. (a) Let X, Y and Z be metric spaces and let f be a mapping of the product space X x Y 

into the space Z. Prove that f is continuous if and only if xn→x and yn →y implies f 

(xn,yn) → f(x, y) 

(b) Show that if f is continuous, then for any y in Y. the mapping fy:X → Z defined by fy 

{x) = f(x.y) is continuous and for any x in X the mapping xf:Y→Z defined by xf(y) = 
f(x,y) is also continuous. (If we regard f as a function f(x,y) of two variables x and y. it is 
customary to say that f is, jointly continuous in both the variables x and y whenever f is 
continuous from the product space X x Y into Z 
(c) What about the converse of the result stated in (b)? Justify your. answer. 

10.4  SUMMARY: 

We learrnt that the properties of open sets and closed sets in the Euclidean plane. We proved 
that product of two compact spaces is compact, the product of any collection of compact 
spaces is compact. 

10.5  TECHNICAL TERMS: 

1. Open base; A collection of open sets that generate the topology of space. 
2. Sub space; A subset of a topological space equipped with the subspace topology. 
3. Topological space; A set equipped with a topology, which defines the open sets of 

the space. 
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10.6 ANSWERS TO SELF ASSESSMENT QUESTIONS: 

10.12: SAQ: Let {Xi} be a non-empty class of topological Spaces and let X= Pi Xi be their 

product space. Suppose Y is a subspace of X. For each i. let Pi: X → Xi be the projection 

mapping and let Pi / Y :Y → Xi be the restriction of pi to Y. The product topology on X is 

the topology generated by the class of all subsets of X of the form  . where i is an 
index element and Gi is an open set in Xi. Therefore the relative topology on Y is the topology 

generated by the class of all subsets of Y of the form . Where i is any index 

element and Gi is any open subset of Xi. It is clear that    

Henec the relative topology on Y is the weak topology generated by the restrictictions  of 

the projections P1 to y. 

10.13: SAQ: Let G be an open subset of X, If p1 (G) =  then clearly it is open Suppose P1(G) 

. Let a  P1(G), then a = p1(x,y), for some (x,y)  G.Then there exists a basic open set 

G1 G2, where G1 and G2 are open in X1 and X2 respectively, such that (x,y)  

G1 G2 G.Thus p1(x,y)  p1(G1 G2) p1(G),since p1(G1 G2)=G1.Hence p1 is an open 

mapping. Similarly, p2 is also an open mapping. 

10.7  SUGGESTED READINGS: 

Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book 
Company, New York International student edition. 

 
                     Dr. V. Amarendra Babu 

 



LESSON-11 

COMPACT NESS FOR METRIC SPACES 
 

OBJECTIVES: 

The objectives of this lesson are to. 
 To understand the concepts of a metric space and understand its properties. 
 To understand the concepts of compactness in a metric space and understand its 

siginificance. 
 Define and apply the lebesgue number 

STRUCTURE: 

11.0:  Introduction 
11.1:  Compactness for metric spaces 
11.2:  Model examination questions 
11.3:  Exercise 
11.4:  Summary 
11.5:  Technical terms 
11.6:  Answer to self assessment questions 
11.7:  Suggested readings 

11.0: INTRODUCTION: 

  The famous ‘Bolzano - weierstrass theorem’ (with Its converse) states that a non-empty 
subset E of the real line is compact if and only if every infinitesubset of E has a limit point in 
E. This motivates the concept of Bolzano -Weierstrass property for metric spaces. In this 
lesson, we define this concept for metric spaces and prove that a metric space is compact if 
and only if it has the Bolzano - weierstrass property. We also introduce the notion of 
sequentially compactness for metric spaces and prove that a metric space is compact if and 
only if it is sequentially compact. In this lesson, we further define the notion of totally 
boundedness for metric spaces and prove that a metric space is compact if and only if it is 
sequentially compact. In this lesson. we further define the notion of totally boundedness for 
metric spaces and prove that a metric space is compact if and only if it is totally bounded. In 
the sequel. we define the notion of Lebesgue number of an open cover in a metric space and 
prove that every open cover of a sequentially compact metric space has a Lebesgue number. 
By using this as a tool, we prove that any continuous image of a compact metric space is 
uniformly continuous. 
First, let us define. the following very important concept.  

11.1: COMPACTNESS FOR METRIC SPACES: 

11.1.1: Definition: A metric space X is said to have the Bolzano - Weierstrass property if 
every infinite subset of X has a limit point in X. 

11.1.2:Theorem: Every compact metric space has the Bolzano-Weierstrass property. 
Proof: Assume that the metric space X is compact.We show That every infinite subset of X 
has a limit point in X. Suppose thatA is an infinite subset of X With no limit points. Since 
each point xX is not a limit point in A, there exists an open sphere  centered on x 
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such that .Since the class  forms an open covering of X, there 
must be some finite Subcovering . Therefore 

 and so A is finite. A contradiction thus every 

infinite subset of X must have a limit point in X. 

11.1.3: SAQ: Prove that a compact subspace of a metric space is closed.  

Let us recall the following definitions, If X is a metric space withmetric d and if x is a point 
and {xn} is a sequence in X, we say that the sequence {xn} has a limit or converges to x, 
written lim xn= x or xn  x, if for every > 0 there exists an integer N such that d (xn, x) < 

whenever n  N . If {xn} is a sequence in X and if {nk} is a sequence of positive integers 

such that n1<n2<............then the sequence {xnk} is called a subse quence of {xn}. 

11.1.4: Definition: A metric space is said to be sequentially compact if every sequence in X 
has a convergent subsequence. 

11.1.5: Theorem: A metric space is sequentially compact if and only if it has the Bolzano 
weierstrass property. 

Proof: Let X be a metric space. Assume that X is sequentially compact. We show that every 
infinite subset A of X has a limit point in X. Since A is infinite, we can choose a sequence 
{xn} of distinct points from A. Since X is sequentially compact. the sequence {xn} has a 

subsequence  {xnk } which converges to a point x in X. Since {xnk } is a sequence of distinct 

points, x is a limit point of the set { / }. Since the set { / } A, it follows that 
x is a limit point of A. 

Conversely suppose that every infinite subset of X has a limit point in X. We prove 
that X is sequentially compact. Let {xn} be an arbitrary sequence in X. If the sequence {xn} has 

a point x which is infinitelyy repeated, then there exists a subsequence {xnk } of {xn} such that 

for all k 1. This subsequence { }, converges to x if no point of {xn} is infinitely 

repeated, the set A of points of the Sequence {xn} is infinite. Since A is infinite. It has a limit 

point x. Then each open sphere centered on X contains infinitely many points of A.We choose a 
subsequence {xnk} as follows. Choose n1 such that d (x,xnk ) < 1. Having n1….nk-1 such that 

n1 n2 ….. nk-1 and d(x, )   for ….  choose an integer  and 

d(x, ) <  for all k  1. Clearly { } converges to x. Thus X is sequentially compact. 

Let us recall the following definition: 

Let X be a metric space with metric d and let A X, The diameter d(A) of A is 
defined by d(A) = sup{d(x,y) /x,yϵA}, A is said to have finite diameter if d(A) is a real 
number. In this case we Say that A is bounded, observe that  if and only if d (A) . 
So, if , then O  d (A) . 

11.1.6: Definition: Let {Gi} be an open cover of metric space X. A real number a >0 is called 

a Lebesgue number for the open cover {Gi} if each subset of X whose diameter is less than a 

is contained in at least one Gi’s 
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11.1.7:Theorem: (Lebesgue’s covering lemma). In sequentially compact metric space, every 
open cover has a Lebesgue number. 

Proof: Let X be a sequentially compact metric space and {Gi} be an open cover of X. We say 

that subset of X is ‘big’ if it is not contained in any Gi. If there are no big sets, then any positive 

real number will serve as a Lebesgue number. We may thus assume that big sets do exist. Note 
that every big set contains at least two points. We define a1 = glb (d(B)/B is a big set}. Clearly 0 a1 

and a1  d(B), for any big set B. It will suffice to show that a1 > 0; for if al > 0 then any real 
number a such that 0 < a < a1 will be a Lebesgue number. We therefore assume that a1 = 0 and 
we deduce a contradiction from this assumption. For each positive integer n there exists a big 
set Bn such that 0 < d (Bn) <  . Choose a point xn in each Bn. Since X is sequentially compact, 

the sequence {xn} has a subsequence {xnk}, which converges to some point x in X. Then 

x for some set   in our open cover {Gi}. Since , is open, there exists an open 

sphere Sr(x) such that Sr(x) . Since , it follows that  for infinitely 

many k, that is  for infinitely many n.  

Choose n0 such that  and n0 . Thus  . If , 

then 
Hence  
This contradicts the fact that  is a big set. 

11.1.8: Definition: 

(i) Let X be a metric space and .A subset A of X is called an net for X if A is 
finite and  

(ii) A metric space X said to be totally bounced if it has an  net for each > O. 
Let us recall that a subset A of X is said to be bounded if 0  d(A) < ,where d(A) is the 
diameter of A. 

11.1.9: SAQ: Prove that a totally bounded metric space is bounded. 

11.1.10:Theorem: Every sequentially compact metric space is totally bounded. 

Proof: Let X be a sequentially compact metric space with metric d. Suppose that X is not 
totally bounded. Then. for some 0. X must have no - net. Let x1 X.Then the finite set 
{x1} is not an - net for X, and so there exists a point x2 Sϵ (x1): Therefore d(x1,x2) .  

Now the finite set {x1,x2} is also not an -net, and so there exists a point 

. Thus d (x1, x3)   and d (x1, x2) . Proceed by induction. If  there 
exist a set of points {x1,....,xn} such that  whenever i r, then this finite set 
is not an –net and so there exists a point ; that is  
whenever i r. Now by induction, we have a sequence {xn} of distinct points in X 

such that   whenever i r. 

Since X is sequentially compact, the sequence {xn} has a subsequence (xnk ). which 
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converges to a point x X. But the open sphere Sϵ/2(x) must contain xnk for k > N, where 

N is some positive integer; that is Sϵ/2(x) contains xn for infinitely many n. This 

contradicts the fact that   whenever i r. Hence X is totally bounded. 

11.1.12: Theorem: Every sequentially compact metric space is compact. 

Proof : Let X be a sequentially compact metric space. Let {Gi} be an open cover of X. By 

lebessgue’s covering lemma, the open cover {Gi} has a Lebesgue number a. Put ϵ = a/3. 

theorem11.1.10,X has an ϵ–net, say {a1,.....,an}. For each k = 1,2,....,n, we have that the 
diameter d (  ( ) ) .Since a is a Lebesgue number of the open cover {Gi}, each k, 

there exists an open set  in {Gi} such that Sϵ(ak) . 

Thus  and hence X= . 
Therefore X is compact. 

11.1.13:Theorem: If X is a metric space then the following conditions are equivalent, 
(i) X is compact (ii) X is sequentially compact 
(iii) X has the Bolzano - Weierstrass property 

Proof : (i) (iii) follows from the theorem11.1.2, (iii) (ii) follows from the theorem 
11.1.5 and (ii)  (i) follows from the theorem 11.1.11. 

11.1.14: SAQ: Show that a compact metric space is separable. 

Proof: We now prove an important theorem regarding continuous functions of compact 
metric spaces into arbitrary metric spaces. 

11.1.15:Theorem: Any continuous mapping of a compact metric space into a metric space 
is uniformly continuous. 

Proof: Let f be a continuous mapping of a compact metric space X into a metric Space Y. Let 
dx and dy be the metrics on X and Y respectively, Let > 0. For each x X, consider the open 

sphere Sϵ/2 (f(x)) centered on f(x) and radius  in Y, Since f is continuous.  is 

an open set in X containing x, Now, the class  is an open cover of X. 

since X is compact, this open cover has a Lebesgue number . If x, x1  are such that 
dx (x, x1) , then the set {x, x1} is a set with diameter . Therefore {x, x1} . 

 for some . Hence f(x), f(x1) . This implies that dx 

(f(x).f(x1)) dY ((x).f(x0)) + dY (f(x0).f1(y))  thus f is uniformly continuous. 

 
11.2: MODCL EXAMINATION QUESTIONS: 
 

1. Prove that a metric space is sequentially compact iff it has the Bolzano Weierstrass 
property. 

2. Prove that every open cover of a sequentially compact metric space has a Lebesgue 
number. 

3. Prove that evry compact topological space has the Bolzano –Weierstrass property. 
4. Prove that every sequentially compact metric space is totally bounded. 
5. Prove that every sequentially compact metric space is compact. 
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6. Prove that any continuous mapping of a compact of a compact metric, space is 
uniformly continuous. 

11.3: EXERCISE: 

1. Prove thate very compact topological space has the Bolzano-Weierstrass property. 
2. Let X be a metric space with metric d and let > 0. Prove that if x  X, then the 

set  is open in X. 

3. Let X be the set of all positive integers. Let T be the topology on X    generated by the 
class of all sets of the form {2n–1, 2n} , where n X. Show that with this topology T, 
X has the Bolzano-Weierstrass property but it is not compact. 

4. Prove that if E, is a compact subset of a metric space, then its derived set  is also 

compact  is the set of all limit points of E in X). 
5. Prove that a subspace A of a metric space X is totally bounded iff is totally 

bounded. 

11.4  SUMMARY: 

We learrnt that the understand the Bolzano – Weierstrass property and its relation to 
compactness. We proved that the equivalence of sequential compactness and compact 
understand the relationship between completeness, totally boundedness and compactness. 

11.5  TECHNICAL TERMS: 

1. Metric space; A set equipped with a metric. 
2. Compact space; A metric space where every open cover has a finite sub cover. 
3. Lebesgue number; The largest number such that every subset of a metric space with 

diameter less than this number is contained in some member of an open cover. 
4. Open cover; A collection of open sets that cover a metric space. 

11.6  ANSWER TO SELF ASSESSMENT QUESTIONS: 

11.1.3:SAQ: Let Y be a compact subspace or a metric x and let d be the metric on X. To 
prove that Y is closed, it suffices to show that its complement y1 in X is open. Let Z ϵ y1. For 

each positive integer n, let . 

Then, {An} is an ascending sequence of open sets in X such that . 
Since Y is compact and {An} is an ascending sequence, there exists a positive integer n such 

that Y An clearly is open. Sphere with centre, z and radius Hence.Y1 is 

open. 

11.1.9:SAQ: d Let X be a totally bounded - metric space with metric d. Let . Since X is 
totally bounded, X has an ϵ– net, say {a1, a2…..,an}.  
Then X . 

If x, y  X then x  Sϵ (ai) any y  Sϵ (ai) for some i, r. Therefore d(x,y)  d (x, ai) + d 

(ai, ar,) + d (ar, y)  d ({a1.....an}) + 2 where d ({a1......an}) is the diameter of 
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{a1.....,an}. This implies that d (X)  d ((a1......an}) + 2 < . 

Hence X is bounded. 

11.1.13:SAQ: Let X be a compact metric space. By theorems 11.1.2 and 11.1.10 X is totally 
bounded. For each positive integer n, let Cn be an –net of X. Put D  Since each 

Cn is finite, it follows that D is countable. 
To prove the result, it suffices to prove that D is dense in X. Let Sr(x) be any open sphere 

in X. Choose n such that, . Since Cn is an  - net for X, we get that . 

Therefore  for some a Cn D. since , it follows that 

. Hence D is dense in X. 

11.7  SUGGESTED READINGS: 

1.   Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book  
Company, New York International student edition. 

 
Dr. V. Amarendra Babu 

 

 



LESSON -12 

ASCOLI’S THEOREM 
OBJECTIVES: 

The objectives of this lesson are to. 
 To understand the concepts of a metric space. 
 To understand the concepts of continuity in a metric space. 
 To understand the concepts of compactness in a metric space. 

STRUCTURE: 

12.0: Introduction 
12.1: Ascoli’stheorem 
12.2: Model examination questions 
12.3: Exercise 
12.4: Summary 
12.5: Technical terms 
12.6: Answer to self assessment questions 
12.7: Suggested readings 
 

12.0: INTRODUCTION: 

In Lesson 11 we established that compactness of a metric space is equivalent to sequential 
compactness as well as BolzanoWeierstrass property. The full power of these criteria becomes 
evident when these are found to be instrument - tal to characterize cmpact subsets of the space 
C(X, ) of complex valued continuous functions on a compactmetric space X.This 
characterization is known as Ascoli’s theorem also called Arzela - Ascoli theorem and Ascoli – 
Arzola theorem . 

This theorem is based on “Cantor’s diagonalization process” which en- ables us to select 
a sequence from an array. of sequences in such a way that except for a few terms in the 
beginning depending on the array all the remaining terms lie in every array. 

12.0.1:SAQ: With notation as above for every m 1the sequence {ym,ym+1….ym+n,….} 
where yk is a subsequence of Sm. In particular {y1,y2…..yk} is a subsequence 

of {x1,x2….xn…..}. 
In the sequel (X,d) stands for a compact metric space and C (X, ) for the Branch space of 

all complex valued continuous functions on X. 

12.0.2:Theorem A : A metric space X is compact if and only if X is complete and totally 
bounded. 

Proof: Assume that X is compact. Let{xn}.be any Cauchy sequence in X. Since X is 

sequentially compact.{xn}contains a convergent subsequence say {xnk}. 
Let x = lim {xnk}.We show that {xn} converges to x. 
If  > 0 there exist positive integers N0 and Nk0, such that 
If  there exist positive integer N0and , such that 
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d(xn, xm) <  for  and   

we may choose . We then have for . 

d(xn, x)  (xn,  

Hence lim xn = x. 
Since every Cauchy sequence in X converges in X, X is complete. 

To prove that X is totally bounded ·Iet > 0 be any number.The collection {S(x)/x  X} 
is an open cover tor X. Since X is compact, there exist finitely many elements of X, say 
x1...... xn such that X =  . This is true for every  , so X is totally bounded. 

Conversely suppose X is complete and totally bounded. Let {xn} be any sequence in X. 
We show that {xn} has a convergent subsequence. Since X is complete it is enough to show 
that {xn} has a subsequence which satisfies Cauchy criterion. 

Write xn = xi,n and Si for {xi,n} since X is totally bounded the collection  has a 

finite subcollection which covers X. Denote this finite subcollection by V1,V2, ..........VN Since 
the elements xi,n  belong to the union of Vi, 1  i  n ,one of these neighborhoods contains xi,n 
for infinitely many n. 
Let S2:{x2.1,x2.2,.........x2.n………} be such a sequence which is included in a single Vi so that 

d(x2,i, x2,j) <   for all i and j 

Apply the above argument to the sequence S2 and the collection  has a finite 

subcollection which covers X.As above we get a subsequence of S2. 

Say  S3= {x 3.1 ,x3.2 .....x3.n……} whose elements lie in one of the spheres so that 

d(x3.i, x3.j) . 

We repeat this process and get a sequence of sequences {Sk} where Sk= 

{xk.1,xk.2……..,xk.n…..} is a subsequence of its predecessor Sk–1and d(xk.i, xk.j) . 

The diagonal sequence S = {y1,y2,.........,yk,} 
Where yk= xk.k   k satisfies the conditions SAQ 9.2. 

Thus if r  s, d(xr.s, xs.s)  

If  and  then for  

  

Henee {yr} is a Cauchy sequence and as each yr = xr.r  is an element of {xn}, {y,} is a 
Subsequence of {x}.This completes the proof. 

Since a closed subspace of a complete metric space is complete we have the following 
theorem as an immediate consequence of theorem A. 

12.0.3:Theorem B: A closed subspace of a complete metric space is compact if and only 
if it is totally bounded. 

12.0.4:Definition: A subset F of C(X, ) is said to be equieontinuous if for eyery positive 
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number there corresponds  depending on  such that for every x, y in X with d 

(x, y) <  and f F such that : 

12.0.5: Remark: Since every f C(X, ) is uniformly continuous given  and 

f C(X, ) there exists  depending on as well as f such that ,  and 

. 
The property that makes a family of functions F in C(X, ) equicontinous, is the existence 

of a common  depending on  alone, such that  
for all f in F. 

12.0.6:SAQ: Every finite set  is equicontinuous. 

12.0.7:SAQ: If (X.d) is any metric space, not necessarily compact, A X and if for every 
  > 0 there exist finitely many points x1, xm in X such that  then there exist 

finitely many points a1...........an in A such tlun  

12.0.8:ProPosition: A totally bounded subset  is equicoruinuous. 

Proof: Since F1 is totally founded, given   there exist finitely many elements fl.........fn 
depending upon  such that  

Since X is compact and each f1 is continuous on X. corresponding to  and f1 there exists 
such that   for x, y in X satisfying d(x,y) <  

Let  
If  for some i,  so that  

If d(x, y) <  and  ,  ,then d(x, y) <  for some i so that  

Hence |f(x) – f(y)| = |f(x) – fi(x) + fi(x) – fi(y) + fi(y) – f(y)| 

  

The proof complete. 

12.0.9: SAQ: If  is totally bounded then F is bounded. 

12.0.10:SAQ: Let (X. d) be a compact metric space, If   n and {fn} converges 

uniformly on X then {fn} is equicontinuous on X. 

12.1: ASCOLI’STHEOREM: 

12.1.1:Theorcm (Ascoli): Suppose F is a closed subset of .Then F is compact if and 
only if F is bounded and equiconrinuous. 

Proof: Suppose F is compact totally bounded hence by 12.0.9 equiconrinuous. Moreover a 
totally bounded set is bounded. Thus compactness of Fimplies that F is bounded  and 
equicontinuous. 

Conversely suppose that F is bounded and equicontinuous. To prove that F is a 
compact subset of the metric space , it is enough to show that F is sequcntially 
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compact in . As we have assumed that F is a closed subset of . Complete as a 
metric space so that every Cauchy sequence in F is convergent. Thus it is enough to show 
that every sequence in F contains a sub sequence when satisfies Cauchy’s criterion for 
convergence in . 

Since X is a compact metric space, X is separable. Hence there is a countable set which is 
dense in X. Let D = {x1.....,xn……} be any such countable denseset in X. 

Since F is bounded, there exists a real number K > 0 such that |f(x)|  K for all f in F and x ϵ 
K.........(1). Since F is equicontinuous, given   there is  such that for all x, y in X 
and f in F. . …………….(2) 

We claim that the open spheres { } where  cover X. Since D is 
dense in X for any x X the open sphere  (x) contains Xm for some m, so that 

X  

Since X is compact this open cover has a finite subcover, So there are integers 
m1,m2………mn. Such that X  

[Text book Print Problem] 

By Heine - Borel theorem this sequence of numbers contains a convergent subsequence, 
Choose any such convergent subsequence say {f1.1(x1),fl.2(x2).......f1(xn )} 

Write S1 = {f1.1.f1.2.f1.3........f1.n………….} 

Si is a subsequence of So such that S1(x1)={f1.1(x1),f1.2(x2)} converges, 

We define inductively a sequence of sequences Sn = { fn+1, fn+2,............fn+k………….} 
Such that for each n, Sn  is a subsequence of Sn-1,  and Sn(xn) { fn–1,1(xn), fn–2,2 (xn),............fn–

k  (xn).......} converges; We have already defined such sequence when n = 1. Assuming that 
Sn-1, is already defined. 

Then Sn-1(xn) =  is bounded. Hence contains a 

convergent subsequence. We choose any such convergent subse quence and denote this by 
 

we now write Sn  
Sn is a subsequence of Sn-1 and Sn (xn) is a convergent sequence. The inductive process is 

complete. We now apply SAQ12.0.1 to the countable collection {S0,S1,……,Sn……} 
The sequence S = { f1.1, f2.2,….fn.n…..} is a subsequence or {f1, f2………fn,……} 
Also for all  is a subsequence of  

Since the sequence Sk (xk) converges and  is a 

subsequence of Sk (xk) this subsequence converges. 
Hence S(xk) =   converges for every k. 

Write gn= fn0.Then {g
1
,g

2
.....,g

n
......} is a subsequence of {f1,f2, f3,......,fn……..} and the 

sequcnce {gn.(xk)} converges for every k. We show that the sequence {gn} is a Cauchy 

sequence in F using (2) and (3). 

Since {gn(x)} converges for 1 i S (s as in (3)) for each i, 1 i s  a positive integer Ni such 
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that |gn(xi) – gm(xi)|  for …………(4) 

Let N ( ) = max (NI…………..Ns) and  . 
By (3) a i э 1 i s  and  
For n m N( ), n m Ni so 

|gn(x) – gm(x)| = |gn(x) – gn(xi) – gn(xi) – gm(xi) + gm(xi) – gm(x)| 

|gn(x) – gn(xi)| – |gm(xi) – gn(xi)| + |gm(xi) – gm(x)| 

 +  +   by (4) and (2) 

Since this is true for every , we get for n > m ( ) 
d (gn, gm)  

Hence {gn} is a Cauchy sequence. 

The proof is complete . 

12.1.2:Corollary: 

Let K be either or ,  X be a compact metric space and F be a closed subset of  C(X.K). 
Then F is compact if it is equicontinuous and Fx={f(x) /  } is bounded for every . 

Proof: In view of Ascoli’s theorem it is enough to show that F is bounded in C(X.K) that is 
there exists a K > 0 such that |f(x)|  K for  and . Since F is equicontinuous, 
there exists > 0 such that |f(x) – f(y)| < 1for all f in F and x, y in X with d (x, y) < . The 
collection of open spheres {  (x) /  } is an open cover for X. So there is a finite 
number of elements, say, x1........xm  in  X such that  

Since  is bounded for every i, 1 i  m, there is a M > 0 such that. |f (xi)| < M for 

every  and 1 i  m. If   there is i such that d (x. Xi) < . This implies that |f(x) 

– f(x) | < 1 for evcry  
Hence |f(x)|  |f (xi)|+|f(x) – f(xi,)| < M+1 . Since this is true for every  and 

 it follows that F is bounded. 

12.2: MODEL EXAMINATION QUESTION : 

1. Define equicontinuity of a family of functions F in .when X is a compact 
metric space. Show that if is totally bounded in .then F is 
equicontinuous. 

2. Let (X, d) be a compact metric space and . If F is compact then F is 
equicontinuous. 

3. Let D be a countable set and {fn} be a sequence of complex valued functions such 

that {fn(x)} is bounded for every . Show that there is a subsequence {gk} of 

{fn} such that {gk (x)} converges for every . 

12.3: EXERCISE : 

1. Show that (0,1) is bounded but not totally bounded. 
2. Let: f: R → R be uniformly continuous. Define fn(x) = f(nx) for n 1. Is {fn} an 

equicontinuous family? 
3. Suppose {fn} is an equicontinuous on a compact metric space (X.d) and {fn(x)} 
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converges for every x  X. Show that {f} converges ill C(X, ) 

4. Let  

(a) Show that  

(b)  Show that |fn(x)| 10 x 1 

(c) Show that fn(x) is not equicontinuous, 

(d) Does equicontinuous imply boundedness? 

12.4  SUMMARY: 

We learrnt that the metric space and continuity in a metric space. We have proved that A 
closed subspace of a complete metric space is compact if and only if it is totally bounded. 
 

12.5  TECHINICAL TERMS : 
 

Compact set –Totoal boundedness – conitnuity: 

The proof of Ascoli’s theorem requires consideration of a countable collection of sequences 
which, when arranged in a sequence. each one is a subsequence of its predecessor.We recall 
that a sequence {bn} is a subsequence of a sequence {an} if there is a strictly increasing 
map: :   such that bn=  for every n 1. 

This definition is equivalent to the existence of a strictly increasing sequence of positive 
integers (nk) such that for every k  1. bk = aK 

Notation: Suppose : X is set and {x1,x2…..xn…..} is a sequence in X. We write 
S0={x1,x2…..xn…..}. 

Suppose we are given a countable collection of sequences {S0,S1,S2……Sn….} such that each Sk 
is a subsequence of its predecessor Sk-1. We write Sk=St = {xk+1,xk+2,……xk+n…….}. 

12.6  ANSWER TO SELF ASSESSMENT QUESTIONS : 

SAQ:12.0.1: Let k+1: →  be the strictly increasing map that makes 

 subsequence of  

Then  for every k 1 and n 1where . 

We define  

Then = →  is strictly increasing and ,  

Thus {  is asubsequence of {xk,n} for all . Also if k + p = r. 

{yr, yr+1,…….yr+n,………} is a subsequence of {xk,k, xk,k+1,.......xk,k+n,}. Which is a 

subsequence of Sk,. 

In particular{x1,1,x2,2,.....xn,n............} is a subsequence of S0 = { x1, x2’...xn……} 

12.0.6:SAQ: Suppose . There are  such that 
 |fj(x) – fj(y)| <   if d (x.y) <   
Set  
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12.0.7:SAQ: Suppose .Then there are x1,......xm in X such that 
  

Suppose  then  choose one element from 
each non-empty set    
Let a1,a2……….an be the points so selected that ……… . 

12.0.9.SAQ:1 > 0, So there are f1.......fm in F such that . 

Let K ……. . If  f then there is j such that  so  
  

12.0.10: SAQ: Let . Since {fn} converges uniformly on X. there is a positive integer N 

such that   for  . 

In particular  for . 

Each of the functions fl…….. fN  is continuous, hence uniform Jy continuous on X. 

Hence there is  sud, that |fi(x) –fi(y)| <  
 
if d(x, y) <  and  If n N and d 

(x,y) <  

. 

12.7  SUGGESTED READINGS: 

1.  Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book  
Company, New York International student edition. 

 
Dr. V. Amarendra Babu 

 



LESSON –13 

SEPARATION 
 

OBJECTIVES: 

The objectives of this lesson are to. 
 To understand the concepts of a Hausdorff space. 
 To understand the concepts of separation axioms. 

STRUCTURE: 

13.0: Introduction 
13.1:  Hausdorff space 
13.2:  Model examination questions 
13.3:  Exercise 
13.4:  Summary 
13.5:  Technical terms 
13.6:  Answer to self assessment questions 
13.7:  Suggested readings 

13.0: INTRODUCTION : 

 In this lesson we introduce three separation axioms and explain some of their 
properties. These axioms are called separation axioms for the reason that they involve 
separating certain kinds of sets from one another by disjoint open sets. 

Consider thae fact that in  and  2 each one point set is closed. But this is not true in 
arbitrary topological spaces. For example, consider the topology I = {, x,{a,b},{b,c},{b}} on 
the three point set X={a,b,c}. In this space the one point {b} is not closed , for its complement 
is not open therefore, one often opposes an additional condition that will rule out examples 
like this one, bringing the class of spaces under consideration closer to those to which one’s 
geometric intuition applies. The condition was suggested by the mathematician Felix 
Hausdroff. So mathematicians have come to call it by his name. 

The Hausdorff condition is stronger than the following property, which is usually 
called the T1-axiom. 
 

13.1:  HAUSDORFF SPACE: 

13.1.1: Definition: A T1-space is a topological space in which given any pair of    distinct points, 

each has a neighborhood which contain the other. 

13.1.2 Examples: 

(i) Every discrete space with more than one point is a T1-space. 

(ii)    Every indiscrete space with more than one point is not a T1-space 

(iii) Consider the space X = {1,2,3}, T{ ,x,{1},{1,2},{1,3}} every open set that   
contains 2 also contains 1.Hence X is not a T1-space. 
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(iv) Let X be any infinite set, and let the topology consist of the empty set  
 together with all subsets of X whose complements are finite 

  (that is co-finite topology) This is a T1-space. 

13.1.3 Self assessment Questions: 

Show that any subspace of a T1 - space is a also a T1 - space. In the following theorem we will 
give a simple characterization of a T1 - space. 

13.1.4 Theorem: A Topological space X is a T1-space if, and only if every sub-     set consisting 
of exactly one point is closed. 

Proof: If x and y are district points of X in which every subset consisting of exactly one point 
is closed, then {x}1 is a open set containing y but not x. While{y}1 is an open set containing x 
but not y. Thus X is a T1 - space.  

Conversely, let us suppose that X is a T1- space and that x is a point of x. 

Then by definition 11.1.1 if y  x there exists an open set Gy containing y but not x, that is 
yGy {x}1. 

But then {x}1 = {{y}: y x }  {x}1, and so {x}1 is an union of open sets, and hence is itself 
open. Thus {x} is a closed set for every xX. 

13.1.5: Self Assessment Questions: 

Show that in a T1 - space X, a point x is a limit point of a set E if and only if every open set 

containing x contains an infinite number of distinct points of E. 

13.1.6: Self Assessment Questions: 

Show that any finite T1-space is discrete. 

13.1.7: Self Assessment Questions: 

Show that a topological space is a T1-space iff each point of X is intersection of all open sets 

containing it. We now define a separation property which is slightly stronger than the T1- axiom. 

13.1.8: Definition: A T2 - space or Hausdorff space is topological space X in which each pair 

of distinct points can be separated by open sets, in the sense tha  they have disjoint 
neighborhoods. That is xX, yX and x  y, there exists 

neighborhoods Ux,Uy, of X respectively such that Ux Uy  . 

13.1.9: Examples: 

(i) Every discrete space X is a T2-space for, if x, yx are such that x  y ,{x} and {y} are 
open sets, {x} {y} =  and x{x}, y{y}. 

(ii) Every metric space is a Hausdorff space. 
(iii) Every Subspace of a Hausdroff space is a Hausdroff space. 
(iv) Every Hausdroff space is a T1-space but converse is not true. For example , if T is the 
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co-infinite topology on an infinite set X then (X,T) is a T1- space but not a Hausdroff space 

(T2 - space) 

By the definition of T, Since any finite subset of X is closed, singletons are closed. Hence, 
(X,T) is a T1 - space. 

We will show that in this space we cannot find two disjoint open sets neither of which is 

empty. For otherwise, suppose G and H are disjoint non-empty open sets then, X = 1 = 
(GH)1 = G1 H1, a contradiction, Since G1 and H1 are finite so is their union G1  H1 = X. 

Therefore (X,T) is not a Hausdroff space. 

13.1.10 Theorem: The product of any non empty class of Hausdroff space is a  Hausdroff 
space. 

Proof: Let X =  be the product of nonempty class of Hausdroff spaces. Let x and y be the 
two distinct points in X. Then we must have   for at least one index i0. Since  is 
Hausdroff, there exists disjoint open sets   and  containing  and respectively. 
Now ( ) and ) disjoint open  sets in the product space containing x and y 

respectively. 

13.1.11: Theorem: In a Hausdorff space any point and disjoint compact subspace can be separated 
by open sets in the sense that they have disjoint neighborhoods. 

Proof: Let X be a Hausdorff space, x a point in X and C a compact subspace of X which does 
not contain x. We exhibit a disjoint pair of open sets G and H such that xG and C H. Let y be a 
point in C. Since y  x and X is a Hausdorff space. There exists disjoint neighborhoods Gy and 

Hy of x and y respectively. If we allow y to vary over C, we obtain a class  {H y}yC of open 

sets such that C   .Since C is compact, there is a finite subclass 

{ } such that. C . 

If Gy1,Gy2,  ......... ,Gyn are the neighborhoods of X which correspond to ’s put G = 

and H= . Clearly G and H are open sets containing x and C respectively. 
For each i = 1,2,…,n G     = . 

Therefore G H =  Hence, G and H are disjoint. We have proved in 
theorem 9.1.3 that every closed subspace of a compact space is compact. By considering the 
indiscrete space X, we have proved that a compact subspace of a compact space X need not be 
closed. We now use the preceding theorem to show that compact subspaces of Hausdorff 
spaces are always closed. 
 
13.1.12: Corollary: Every compact subspace of a Hausdorff space is closed. 

Proof: Let C be a compact subspace of a Hausdorff space X. We prove that C is closed by 
showing that its complement Cl is open. C1 is open if it is empty. So we may assume mat C1 is 
non-empty. Let x be any point in C1. By theorem  to 13.1.1, x has a neighborhood Gx                

such that xG C1. Clearly, Cl= ;    therefore C1 is open. One of the most useful 

consequences of this result is the following: 
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13.1.13: Theorem: A one–to–one continuous mapping of a compact space on to a Hausdorff 
space is a homeomorphism. 

Proof: Let f: X Y be a one-to-one continuous mapping of a compact space X onto a 
Hausdorff space Y. We must show that f(G) is open in Y whenever G is open in X. If G is open 
in X then G1 is closed in X. Since X is compact, G1 is compact. Therefore f(G1) is compact 
since f is continuous. Since f is onto f(G)1 = f(G)1 is a compact subspace of a Hausdorff space 
Y. Hence. By Corollary 13.1.12. f(G)1 is closed. Therefore, f(G) is open. 

13.1.14: Self Assessment Questions: 

(a) Give an example of a topological space in which any sequence converges to every point of 
the space. 

(b) If X is a Hausdorff space, show that every convergent sequence in X has a unique limit. 

13.1.15: Definition: Let X be a topological space: and consider the set C(X  ) of all bounded 
continuous real functions defined on X. If for each pair of distinct points x and y in X there exists’ 
a function f in C(X,  ) such that f(x) f(y), we say that C(X ) separates points. 

13.1.16: Lemma: If C(X,  ) separates points then X is Hausdorff space  

Proof: Let x.yX such that x  y. Since C(X,  ) separates points there exists a function f in C(X, 
 ) such that f(x)  f(y). Suppose f(x)<(y). Let r be a real number such that 

f(x)<r<f(y}. Now put Gx= f 1(,r ) , Gy= f  (r,) Since f is continuous,  and are 

open in X and x , and y , Gx  Gy =  Hence, X is Hausdorff space. 

13.1.17:Definition: A topological space X is said to be a completely regular      space if (i) X is 
a T1-space (ii) xX, F is a closed subspace of X such that xF then there exists a function f in C(X, 

 ) such that 0  f ( x)  1x  X and f(x)=0 and f(F)=I. Thus completely regular spaces are T1-

spaces in which continuous functions separate points from disjoint closed subspaces. 

13.1.18: Lemma: Every completely regular space is a Hausdorff space. 

Proof: Let X be a completely regular space, Then X is a T1 – space by definition. we will show 

that C(X, ) separates points. Let x,yX such that x  y. Since X is a Ti-space singletons are 

closed. Thus {y} is closed and x{y}. Then there exists an f in C(X, ) with values in [0,1] 
such that f(x)=0 and f(y)=1. Hence for any x,y in X such that x y there exists in C(X,  ) such 
that f(x) f(y). By Lemma 13.1.17. X is a Haussdorff space. 

13.1.19: Remark: Any subspace of a completely regular space is completely regular. Our 
next separation property is similar to that of a Housdorff space, except that it applies to 
disjoint closed sets instead of merely distinct points. 

13.1.20: Definition: A T1-space X is said to be normal space if for any two disjoint closed 

sets F1 and F2 in X there exist disjoint open sets GF1   and   GF2    such that F1  GF1  , and 

F2  GF2  . 
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Note: Any metric space is a normal space (see 13.4(5)) 

13.1.21: Theorem: Every compact Hausdorff space is normal. 

 Proof: Let X be a compact Hausdorff space and F1 and F2 be disjoint closed subsets of X. 

We must produce a disjoint pair of open sets and such that and F1  GF1  , and F2  

GF2  . If either of the closed sets is empty. We can take the empty set as a neighbourhood of  F1 
and the full space as a neighborhood of the other. We may therefore assume that both F1 and 

F2 are disjoint compact subspaces of X. Let x be a point of F1 then xF2 hence by theorem 

13.1.11, there exist disjoint open sets and  , such that xG and F2 GF2  . The 

collection {Gx/xF1} covers F1, and since F1, is compact there exist x1,x2…………in F1, such 

that F1   
Now, put clearly   , is an open set containing F1, Put  

. Hence =  for i= 1,2,.......................n Therefore  
=( ) =   )  = . 

Hence  are disjoint open sets such F1   
Since F2  for i = 1,2,………n. 
Therefore X is a normal space. 
A characterization of normality is given in the following theorem. Let us recall that by a 
neighborhood of a set F we mean an open set G containing F. 

13.1.22 Theorem: A topological space X is normal if and only if each  neighborhood 
of a closed set F contains the closure of some neighborhood of F. 

Proof: Suppose X is normal and the closed set F is contained in an open set G. Put, K = X– G . 
Now K is a closed set which is disjoint from F. Since X is normal there exist disjoint open sets 
GF and GK such that F GF and K Gk. Since GF  X \ Gk and X– GKis closed, we have 

  X  GK. 

Now,   X  Gk  X  K = G. Thus GF is a desired set. 

Here GF is a neighborhood of F and its closure   G Conversely suppose the condition 

holds and let F1 be contained in the open set X - F2, and by hypothesis there exists an open set 

such that and . Clearly  and X     form a pair of desjoint open 
sets containing F1  and F2  respectively. 

We now prove the main theorem of the lesson that is commonly called the ‘Urysohn’s 
Lemma’. It asserts the existence of certain real-valued continuous functions on a normal space 
X. 

13.1.23: Theorem (Urysohn’s Lemma) : Let X be a normal space and let A and B be disjoint 
closed subspaces of X. Then there exists a continuous rea1funnction f defined on X, all of whose 
values lie in the closed unit interval [0,1] such that f(A) =0 and f(B) =1. 

Proof: We shall define, for each rational number r, an open set Ur of X in such a way that 

whenever r<s we have . For each rational number r such that . define  for 
each . define . Let {rn} be a listing of all rational numbers in the interval [0, 1] such 
that r1=0 and r2=1. Define . Since A is a closed set contained in the open set by 
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theorem 13.1.22. there is an open set  r, such that . and  suppose that 
………, . are defined. We define  as follows: The number r1 is the smallest 

element. and r2 is the largest element of the set {r1, r2,…..rn+1} and rn+1 is neither r1 nor r2 So, rn+1 
has an immediate predecessor p and an immediate successor q in{r1,r2,.........rn+1) 

.Since p < rn+1<q, sets Up and Uq are already defined and  . Since X is normal, there is 

an open set Ur n+1 of X Such that  and . By induction, we have 

 defined for all n, we now define f :X as follows: Given a point x of X, let us define 

Q(x) ={r/xUr}, r<0  x  = Ur so, rQ(x)  xc. Also Q(x) it contains every number greater 

than I, since every x is in Ur, for r > 1. Therefore Q(x) is bounded below, and its greater lower 

bound is a point in the internal [0,1]. 
Define f(x) = glb, Q(x) = glb {r/xUr}. 

We show that f is the desired function. If xA, then xUr for every r  0, so that Q(x) 

equals the set of all.non-negative rationals and f(x) =g.l.b Q(x)=0. similarly, if xB, then 
xUr for no r  1, so that Q(x) consists of all rational numbers greater than 1, and f(x) =1 

We finally we show that f is continuous. 
For this purpose, we first prove the following elementary facts. 

(i)   

(ii)    
To prove (i), note that if xUr, then nUs for every s > r Q(x) contains all rational 

numbers greater than r, so that by definition we have f(x) -glb Q(x)  r. 

To prove (ii), note that if xUr then xUs for any s r. Therefore Q(x) contains no 
rational number less than or equal to r.f(x) = glb Q(x) r. 
Now we Prove continuity of f. Let xoX. Let (c,d) be an open interval containing the 

point f(xo). Choose rational numbers p and q such that c < p < f(xo) < q <d. Put 

U= . Clearly x0U (for it xoUq  then by (ii) f(xo)  q. Also xo  , because xo 

,  f(xo)  p, by(i)). U is a nbd of xo. We show that f(U)  (c,d). 

Let xU then xUq   so that,  by (i) And  po so that  and  

by (ii) Thus f(x) , as desired. 
The following slightly more flexible form of Urysohn’s lemma will be useful in applications. 

13.1.24:Theorem :Let X be normal space, and let A and B be disjoint closed subspaces of X. 
If [a,b] is any closed interval on the real line, then there exists a continuous real function f 
defined on X, all of whose values lie in [a,b], Such that f(A) = a and f(B) = b 

Proof: If a = b, we have only to define f by f(x) = a for-every x, so we may assume that a < b. If g 
is a function with the properties stated in Urysohn’s lemma, then the function f defined by f(x) 
= (b a) g(x)+a has the required properties. 

 13.2: MODEL EXAMINATION QUESTION: 

1)  Show that a topological space is a Ti-spece if and only if each point is a ,closed set, 

2) Show that a one-to-one continuous mapping of a compact space onto a Hausdorff 



Topology 13.7  Separation 

space is a homeomorphism. 
3) Define a ‘Hausdorff space. Show that every compact subspace of a Hausdorff space is 
closed. 
4) Define a completely regular space and a normal space. Prove that every compact 
Hausdorff space is normal. 
5) State and prove Urysohn’s lemma: 

 13.3: EXERCISE : 

  
1) Show that in a Ti-space, no finite set has a limit point. 

2) Show that the co-finite topology defined on an infinite set is a Tj-space but not a     

Hausdorff space.. 
3) If f is a continuous mapping of a topologica1 space X into a Hausdorff space Y, prove      

that the graph of f={(x,f(x)/xX} is a closed subset of the product space XxY. 
4) Show that any metric space is a Hausdorff space . 
5) Show that any metric space is a normal space. 
6) Show that a closed subspace of a normal space is normal. 
7) Let X be a. T1-space, and show that X is normal iff each neighborhood of a closed set F 

contains the closure of some neighborhood of F. 
8) Is every normal space a Hausdorff space? 
9) 1s a normal space completely regular? 
10) Is completely regular space normal? 

13.4  SUMMARY: 

We learrnt that the Hausdorff space and topological space. We have to prove that the product 
of any non empty class of Hausdroff space is a Hausdroff space. 

13.5  TECHNICAL TERMS: 

1. T1 space: A topological space where for any two distinct points, there exist open sets 
containing each point but not the other. 

2. T2 space (Hausdorff space): A topological space where for any two distinct points, 
there exist disjoint open sets containing each point. 

13.6  ANSWER TO SELF ASSESSMENT QUESTIONS: 

13.1.3: Let Y be a subspace of TI–space X: Let y1  y2 be distinct elements in Y. Since X is a 

T1– space there exists a neighborhood G of y1 and a neighborhood H of y2 such that  

and . Then, GY and H Y are neighborhoods of y1 , and y2 in Y. such that y1  GY 
and y1  H  Y. Hence, Y is a T1 – space. 

13.1.4: Sufficiency of the condition is obvious. To prove the necessity, suppose there were an 

open set G containing  for which GE was finite. 
If we set  then each set {xi} would also be a closed set. 

But then would be an open set containing x with 
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Thus x would not be a limit point of E. 

13.1.16:SAQ: Since X is a T1-space, singletons are closed, Let A be a subset of  
X then  is a finite union of closed sets and hence closed. Thus any subset of X is 
closed and thus any subset of X is open. That is (X, ) is a discrete space. 

13.1.7:SAQ :Let N be the intersection of all open sets containing on arbitrary point x and let y 
be any point of X different from x. Since the space is T1, there exists a neighborhood of x not 

containing y and consequently y cannot belong to N, that is yN. Since y is arbitrary, no point 
of X other then x can belong to N. It follows that N={x}. Now we prove the converse part let 
x.y be any two distinct points of X. By hypothesis, the intersection of all neighborhoods of x is 
{x}, Hence there must be a neighborhood of x which does not contain y. It follows that X is a 
Ti-space, 

13.1.14:SAQ: We first recall the definition of the convergence of a sequence in a topological 
spcace. Let X be an arbitrary topological space and {xn} a sequence of points in X. This sequence 

is said to be convergent if there exists a point x in X such that for each neighborhood G of x a 
positive integer n0 can be found with the property that xn is in G for all n  no. The point x 

is called a limit of the sequence, and we say that {xn} converges to x (and symbolize this by 

xn  x). 

 

a) Example : Consider the indiscrete topological space X consisting of at least two points. This 
space is not a .Hausdorff space but in this space any sequence converges to every point of 
the space. 

Note: This is the reason why the above point x is called a,limit instead of the limit. It is the 
failure of limits of sequences to be unique that makes this concept unsatisfactory in general 
topological spaces. The following result shows that this anomalous behavior cannot occur in a 
Hausdorff’ space. 

b) In a Hausdorff space, a convergent sequence has a unique limit :- Suppose a sequence {xn} 

converges to two distinct points x and x • in a Hausdorff space X. Then there exist two 

disjoint open sets G and G • such that xeG and xG• . Since xn x, there exists a positive 

integer N ‘such that xnG whenever n > N. Since xn x • , there exists an integer N such 

that xnG• whenever n > N. If m is any integer greater than both N and N • , then xm  

must be in both G and G’, which contradicts the fact that G and G • are disjoint. 

13.7  SUGGESTED READINGS: 

1.  Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book 
Company, New York International student edition. 

 
 

       Prof. B . Satyanarayana 



LESSON-14 

TIETZE EXTENSION THEOREM 
OBJECTIVES: 

The objectives of this lesson are to. 
 To understand the concept of normal spaces. 
 To prove the Tietze Extension Theorem 

STRUCTURE: 

14.0:  Introduction 
14.1:  The tietze extension theorem 
14.2:  Model examination questions 
14.3:  Exercise 
14.4:  Summary 
14.5:  Technical terms 
14.6:  Answer to self assessment questions 
14.7:  Suggested readings 

14.0  INTRODUCTION : 
 
The Tietze Extension Theorem is a fundamental result in topology, named after the German 
mathematician Heinrich Tietze. This theorem is a powerful tool for constructing continuous 
functions on topological spaces. In topology, a continuous function is a function between 
topological spaces that preserves the topological properties, such as openness and closedness. 
However, it is not always easy to construct continuous functions on a given topological 
space. The Tietze Extension Theorem provides a solution to this problem by allowing us to 
extend a continuous function defined on a subspace to the entire space. 
 
Consider the metric space  and the subset  Since is a metric space, it 

is normal, meaning that any two disjoint closed sets can be separated by disjoint open sets. 
 

Define a function  by  This function is continuous on F, 

but it cannot be extended to a continuous function  

The reason is that the limit of  as x approaches 0 does not exist. In fact, the function 

 oscillates between –1 and 1 as x approaches 0. 

This example illustrates that even though F is a subspace of a normal space X, a continuous 
function on F may not be extendable to a continuous function on X. 

This highlights the importance of the Tietze Extension Theorem, which provides conditions 
under which a continuous function on a subspace can be extended to a continuous function on 
the entire space. 

14.1: THE TIETZE EXTENSION THEOREM : 

14.1.1: Tietze extension theorem : Let X be a normal space, Y a closed subspace of X and f a 
continuous real function defined on Y whose values lie in a closed interval [a,b]. Then f has a 
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continuous extension f1 defined on all of X whose values also line in [a, b]. 

Proof: If a = b then f (x)= a x Y and we define in this case f1(x) = a x  X 
Assume that a < b. Since f is bounded. the set {f(x)/x Y} has l.u.b. M and g.1.b.m. 

Since a  f ( x) b for every xY we have a m  M  b . we may therefore assume that [a,b] 

itself is the smallest closed interval such that a  f ( x)  b for all xY. Since [a,b] is 
homeomorphic to [–1, 1] we may further assume that  
Thus f is a continuous function from into [–1,1] and g.l.b {f (x) / xY) = –1 and I.u.b 
{f(x)/xY}=1 

Now let . Then A1, B1 are closed subsets of Y and 

hence of X. Since –1= g.l.b {f(x)/xY}, there exists a sequence {an} in Y such that 

 similarly there is a sequence {bn} in Y such that  

The implies that A1,B1 are non-empty. Since X is normal by Urysohn’s lemma there is a 
continuous function. G1: X [–1,+1] such that 

(a) g1(A1) = –1 

(b) g1(B1) = +1 

   Define  

Then function f1 is a continuous function  

To see this first we select . 

The we have  

  

  

  

  
  

  

  

  
  

  
  

  
  

  

  

  

It is clear that A2,B2 are closed subsets of Y and so closed subsets of X 
We claim that A2 is non-empty 
We know that 
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There fore thus is an  

  

It follows that for all  

  

Similarly  
  

Since X is normal there is a continuous function 

  

Such that   

We set  
f2 = f1 . It is checked that 

  

inductively we construct a sequence of continuous function on X 
g1……………………,   …………………… 
such that 

 ………………..(1) 

 ……………..(2) 

If we set …………….(3) 

Then  

  

Suppose we have defined g1………..gm having properties 1,2,3 define 

  

  

Then it is easily checked that 
4)   are closed subsets of X 
5)   are non-empty 

6)   

By uryshon’s lemma there is a continuous function. 

  

Such that 

  

We find that g1,…….,gm+1 
Satisfy conditions (1),(2),(3). 
Since  
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By weierstars M- test we obtain that the series  converges uniformly to a function 
g:X  R . As a limit of a uniformly convergent series for functions. . 
g is continuous. And we have 

  

  

  

Thus we have extended f to X;  . Is the extension 

14.1.2: SAQ : Prove the converse of Tietze extension theorem: 

Let X be a topological space. Prove that if every real- valued continuous mapping f of a closed 
subspace F of X into a closed interval [a,b] can be extended to a continuous real-valued 
mapping f* of X into [a.b] then X is normal. 

Proof: suppose F1and F2 are two disjoint nonempty closed subsets of X Let [a,b] be any closed 

interval such that a < b. The mapping f defined by f (x) = a if xF1and f(x) = b if xF2 is then a 
continuous mapping of the closed subs are F1 F2 into [a.b], Then there exists a continuous 
function f* of X into [a.b] such that f*/ F1F2 = f. If c is any real number such that a < c < b 
then f*-1 ([a,c]) and f*-1 ([c.b]) are disjoint open sets containing F1 and F2 respectively. Thus X 
is normal. 

The following example shows that the closedness of F is essential in the above the 
theorem. 

14.1.3: Example: 

Let X = [0,1] and F – (0. 1). Since X is a metric space, it is normal. F is not  closed in X. 

Define. f: F  [–1,1] by f(x) = s in .  Then f  is continuous. Since  does not 

exist f can not be extended to a continuous mapping f* of X into [–1. 1]. 
We now turn our attention on the metrization problem. We begin with the following 

example. 

14.1.4:Example: The Infinite dimensional unitary space c consisting of all sequences of 
complex {xn} such that   is also denoted by I2 and is a complete metric space 

with respect to the metric defined by  

We denote the topology induced by this metric by Td .Clearly 12   where is the space of 
all sequence of complex numbers. 
Since  where  has the product topology on it where  is topology 
equipped with the usual topology induced by the metric  and 

 we denote the restriction of the product topology on  to I2 by T and prove that 
. 

For  these sets S(k, ) are the 
typical subbasic open sets of d that contain   
Let k1 ………… kr be a sequence of natural numbers and let 1, 2,……….., r be a sequence of 
positive numbers. The sets  

1, 2,……….., r ) 
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are the typical basic open sets of  that contain  
if  and  then  

  
and so 

  
This implies . We claim that there are no sequences k1,k2,……….kr of natural 
numbers and 1, 2,……….., r  positive numbers such that  
To see this we set  
Choose any positive integer k. Take any sequence  

.  

The sequence is in I2. This sequence is also in . However if we take   

 
we have  

  

  

  

 and so   

The following basic fact about product topology will be in Uryshon’s embedding  theorem.  

14.1.5: Proposition : 

Suppose that I is a set, for each in I, (Ai,Ti) is a topological space and (A,T) is the product of 

the (A,T). Let Pi: A Af be the projection of A onto the ith factor Pi((xf)) = xi. Then 

(1) Pi is continuous ; (2) Pi is a open map and 

(3) If Y is a topological space and f : Y A is any map, then f is continuous iff pi of is 

continuous for all in f in I. 

Proof : Let us recall that for iI, I(J) = 1–{J}, 

J11..........., JmI,I(J1,J2,………,Jm) and for Vh,…… ………  in  ……  

the sets x……..x x  are basic open sets for T 

1) Suppose VJ is an open sets AJ Then  is a sub basic open set 

of T. This implies that Pj is continuous.  
2) It is enough to prove PJ(V) is an open subset for every basic open subset V of T.  Let 

……..  then   and so 2 is 

proved  
3) Consider  and   

we have 

  
 Therefore  of is continous for all j implies. 
    

is an open set of Y for all sub basic open sets V of A. This implies that f is  continuous. Then 
rest is clear. 
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we recall a definition. 

14.1.6: Definition : 

Suppose (X,T) is a topological apace we say that (X,t) is metrizable. 
If there is a metric d on X such that the topology Td induced by the metric d on X is the 

same as T : T=Td 

14.1.7: Proposition : Let  be given the usual topology and let  be 

the product space. with the product topology T define  
where x = (xn), y = (yn) are elements of J. Then d is a metric on J and the topology Td 
induced by d is the same as T. 

Proof : We leave the proof that d is a metric to the reader. In the case of I2 we have just 
proved that  

The same method will give us in this case also   
We shall now prove  
To get a clear idea we shall first prove that the open sphere . 
contains a basic open neighborhood V of O with respect to the product topology. 

We get 
  

We can find a positive integer n0 such that  

We set   

For any x = (x0) in V we have    
  

  

  

  

  
Thus . Suppose now  and we are given . As above  

we get  and choose an n0 such that   . If   then we choose 

intervals as follows 
  

This is an open interval of Jm and 
   

is a basic open set containing  suppose  . Then 
  

  

   

Thus  this implies that every point  of an open set  with respect to the metric 
technology Td has a neighborhood  with respect to the product topology T. So we 
have  i.e: . 

Thus the proposition is proved. 



Topology 14.7    Tietze extension theorem 

14.1.8: SAQ: Let X be a topological space and F a closed subspace of X. Suppose every real-
valued continuous mapping f of F into [0,1] can be extended to a continuous real-valued 
mapping f* of X into [0,1]. Prove that X is normal. 

14.1.9: SAQ: Let X be a topological space and F a closed subspace of X. Suppose every real-
valued continuous mapping f of F into [-1,1] can be extended to a continuous real-valued 
mapping f* of X into [-1,1]. Prove that X is normal. 

14.2: MODEL EXAMINATION QUESTIONS: 

1. State, and prove Tietze extension theorem. 
2. Let X be a normal space, Y a closed subspace of X and f a continuous real function 

defined on Y whose values lie in a closed interval [a,b]. Then f has a continuous 
extension f1 defined on all of X whose values also line in [a, b]. 

14.3: EXCERCISE: 

1) Prove that a separable, metric space is second countable 

2) Show that every metric space is normal 
3) Does the continuous function  defined on R–{O} have a continuous extention to the 

whole of R ? 

4) Let  X=[ 1,1] , Y  Define f, f1, f2 by 

              
  

  show that f1 and f2 are continuous extension of f. 

5) Define f(x) = x sin   for x  (0,1] show that f has a unique continuous extension on 

[0,1]. 

14.4  SUMMARY: 

We learnt that normal space, metric space and continuous extension. We have proved that 
Tietze extension theorem. 

14.5  TECHNICAL TERMS: 

1. Normal Space: A topological space X that satisfies the separation axiom T₄, meaning 
that any two disjoint closed sets can be separated by disjoint open sets. 

2. Closed Subspace: A subspace Y of a topological space X that is closed in the 
topology of X. 

14.6  ANSWER TO SELF ASSESSMENT QUESTIONS: 

14.1.8: SAQ: Let A and B be two disjoint closed sets in X. We need to find disjoint open sets 
U and V in X such that A ⊆ U and B ⊆ V. Define a function f: A ∪ B → [0,1] by f(x) = 0 if x 
∈ A and f(x) = 1 if x ∈ B. This function is continuous on A ∪ B. By the given condition, 
there exists a continuous function f*: X → [0,1] that extends f. Let U = f_⁻¹([0,1/2)) and V = 
f_⁻¹((1/2,1]). Then U and V are disjoint open sets in X such that A ⊆ U and B ⊆ V. 
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Therefore, X is normal. 

14.1.9: SAQ: Let A and B be two disjoint closed sets in X. We need to find disjoint open sets 
U and V in X such that A ⊆ U and B ⊆ V. Define a function f: A ∪ B → [-1,1] by f(x) = -1 if 
x ∈ A and f(x) = 1 if x ∈ B. This function is continuous on A ∪ B. By the given condition, 
there exists a continuous function f*: X → [-1,1] that extends f. Let U = f_⁻¹([-1,0)) and V = 
f_⁻¹((0,1]). Then U and V are disjoint open sets in X such that A ⊆ U and B ⊆ V. 
Therefore, X is normal. 

14.7  SUGGESTED READINGS: 

1.  Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book 
Company, New York International student edition. 

       
  Prof. B . Satyanarayana 

 

 
 



Lesson – 15 

URYSHON’S EMBEDING THEOREM 
 

OBJECTIVES: 
 

The objectives of this lesson are to. 
 To understand the concept of normality and second-countability. 
 To prove the Urysohn Imbedding Theorem. 

STRUCTURE: 

15.0:  Introduction 
15.1:  The tietze extension theorem 
15.2:  Model examination questions 
15.3:  Exercise 
15.4:  Summary 
15.5:  Technical terms 
15.6:  Answer to self assessment questions 
15.7:  Suggested readings 

15.0  INTRODUCTION: 

Urysohn's Imbedding Theorem is a fundamental result in topology that establishes a connection 
between normality, second countability, and metrizability of topological spaces. In this lesson the 
theorem provides a sufficient condition for a topological space to be metrizable, which is essential in 
various applications. The theorem shows that normality and second countability imply metrizability, 
highlighting the importance of these properties.The theorem enables the imbedding of topological 
spaces into metric spaces. 
Consider the unit square X = [0,1] × [0,1] in ℝ², equipped with the subspace topology inherited from 
the standard topology on ℝ². 

This space X is: 

1. Normal: Since ℝ² is a metric space, it is normal. As a subspace of ℝ², X inherits this property. 
2. Second-countable: The standard topology on ℝ² is second-countable, and X inherits a countable 
basis from this topology. 
By the theorem, X is metrizable. In fact, the standard metric on ℝ², restricted to X, induces the 
subspace topology on X.This example illustrates the theorem's statement, showing that a normal and 
second-countable space (the unit square X) is indeed metrizable. 

15.1: THEOREM : (URYSHON IMBEDDING THEOREM ) 

Suppose X is a topological space. which is normal and second countable. Then X 
is metrizable. 

Proof : Let    
be a basis for for the open sets of the topology of X. We consider the ordered pairs of 

 of natural numbers such that . 
we have assumed that X is normal, By  Urysohn’s lemma there is a continuous      function. 

  such that 
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1)  and  
2)  

The set of ordered pairs (m, n) we have considered is a subset of NxN which is a countable 
.So the set functions is a countable set. We write them in a sequence { f1,f2,…,fn,…….}  
corresponding to each p  N there is a unique ordered pair (m, n) such that  and 
conversely. We define a map  by  

  

we recall that   

is the projection map and that  is continous if and only if    

is a continuous function on X. If follows that F is a continuous map into the product J of 
topology spaces Jk. 

We denote F(X) by Y. We consider Y with the topology To induced by the product topology 
T on J. We have just proved that   is a continuous onto map. 
We will now prove that F is one - to - one and open. 
F is one–to–one : Let    and . Then there is a basic neighborhood  of x, such 
that  
Since X is normal we may choose a basic neighborhood  of x such that  
Then we have a p = p(m, n) such that    fp(x)=1 and fp(y)=0 

 This implies that  
  is an open Map : It is enough to show that the image of each  is an open subset 

of Y Let  

We shall prove that there is a neighborhood V of v with respect to the topology T 
on Y induced by T on J such that  

Since  there is an u in  such that v = F(u) 
The space X is normal and .Therefore there is a basic open set  such that 
  corresponding to this pair (m, n) of natural numbers there is a p = p(m, n) 
such  that  fp = fmn. 
we have fp(x) = 0 if   

The set  

is a sub basic open set of J since fp(u) =1. The point v = F(U)V. If x in X satisfies 
F(x)V then we must have 

   

that is   

this implies that . 
Therefore we have proved that  
That is F (  n ) is an open subset of Y. Since F is continuous and also one - to-one it follows 
that  is a homeomorphism 

In the previous result we have proved that 
T = Td on J. Therefore T on Y is the same as the topology Induced by the metric on Y. Thus 

we have, proved that X Is homeomorphic to a metrizable space. So X is metrizable. 

15.1.1: SAQ: Show that a compact hausdorff apace Is metrizable it is second countable 

Proof: Let X be compact Hausdorff space. Then it is normal Suppose X is second countable. 
Then by urysohn Imbedding theorem, X is metrizable. Conversely suppose that X is 
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metrizable. By SAQ 11.1.13 since X is a compact metric space, It is separable. Since every 
separable metric space is second countable it follows that X is second countable. 

Remark : Theorem 15.1.1 provides an example of a metrizable space . In this Theorem we 
show that the Tychonoff product of metric spaces is metrizble. In an example we show that the 
metric topology of the infinite dimensional Euclidean space   (also denoted by 12) is stronger 
than the relative topology inherited from the Tychnoff product  

15.1.2:Theorem: Suppose for each natural number n, (An, dn) is a metric space and Tn. is the 

topology induced on An by dn. Then the product space (A, T) where  and T 

is the product topology, is metrizable. 

Proof: Since the metric  and dn generate the same topology on An. we may assume that 

. 
For x= (xn) and y = (yn) in A define  

Since  and  is convergent 

The series on the right hand side converges, hence the above definition is meaningful. 
For x = (xn). y =(yn) and z = (zn) in A we have 

i.   

ii.  and 

iii.   

  

  

Thus d is a metric on A. We denote the topology on A Induced by d by T1. 

What we prove is That T = T1. 
For this it is enough to prove that 

1) given an open set V of T and  there is a neighborhood  of  with respect 
to T1 such that  and 

2) given an open set U1 in T1 and  there is a neighborhood  of  with respect 
to T such that . 

Further it is clear that the statement (1) if proved for a class of sub basic open sets implies the 
statement for all open sets of T. So it is enough to prove (1) and (2) for sub basic open sets V and 
U. 
Let V be a sub basic open set with respect to the product topology T. Then there is a natural 
number m and an open set V (m) of Am such that 

  

Let . Then  since Tm is the topology induced by the metric dm there 
is a  such that  

then we claim that the sphere of radius  centered at . 

With respect to d is contained in V:  Suppose . 

Then we have 
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This implies that   
and so . We have, provide (1). Let U1 be an open set in the topology generated by the 
metric d on A and let . By the definition of the topology T1 there is  such that 

 
we choose a natural number k such that 

 i.e  

This is possible because of Archimedian property of R. we claim that 
  

is contained in  suppose  then 
  

  

  

 + +  

Therefore 
 and We have proved (2) 

The result is proved. 

15.1.3:SAQ: Suppose X is a topological space that is normal and second-countable. Prove 
that there exists a homeomorphism between X and a subspace of the Hilbert cube. 

15.1.4:SAQ: Let X be a normal and second-countable topological space. Prove that X can be 
imbedded into a compact metric space. 

15.2: MODEL EXAMINATION QUESTIONS: 

1. State and prove UrySohn’s imbedding theorem 
2. Show that the product topology of a countable collection of metric space is         

metrizable. 
 

15.3: EXCERCISE : 

1) Show that a second countable normal space is metrizable 
2) Let Ix = [0, 1] ((x [0,1]) ) equipped with the usual topology, Show that product topology 

an is normal but not metrizable. 
3) Given an example of a metric space which is not second countable. 

15.4  SUMMARY: 

We learnt that the countable, product topology and imbedding. We proved that Urysohn’s 
imbedding theorem. 

15.5  TECHNICAL TERMS: 

1. Normal Space: A topological space X that satisfies the separation axiom T₄, meaning 
that any two disjoint closed sets can be separated by disjoint open sets. 
2. Second-Countable Space: A topological space X that has a countable basis for its 
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topology. 
3. Metrizable Space: A topological space X that can be endowed with a metric that induces 
its topology. 
4. Imbedding: A homeomorphism between a topological space X and a subspace of another 
topological space Y. 

 

15.6  ANSWER TO SELF ASSESSMENT QUESTIONS: 
 

15.1.3: SAQ: Let X be a normal and second-countable topological space. We need to prove 
that there exists a homeomorphism between X and a subspace of the Hilbert cube. Since X is 
second-countable, it has a countable basis {U_n}. For each n, define a continuous function 
f_n: X → [0,1] such that f_n(x) = 0 if x ∉ U_n and f_n(x) = 1 if x ∈ U_n. Define a function f: 
X → [0,1]^ω by f(x) = (f_1(x), f_2(x), ...). Since each f_n is continuous, f is also continuous. 
Moreover, f is injective, since if x ≠ y, then there exists n such that x ∈ U_n and y ∉ U_n, so 
f_n(x) ≠ f_n(y). Finally, f is a homeomorphism onto its image, since it is continuous and 
injective, and its inverse is also continuous.Therefore, there exists a homeomorphism 
between X and a subspace of the Hilbert cube. 

15.1.4: SAQ: Let X be a normal and second-countable topological space. Since X is second-
countable, it has a countable basis {U_n}. For each n, define a continuous function f_n: X → 
[0,1] such that f_n(x) = 0 if x ∉ U_n and f_n(x) = 1 if x ∈ U_n. Define a function f: X → 
[0,1]^ω by f(x) = (f_1(x), f_2(x), ...). Since each f_n is continuous, f is also continuous. 
Moreover, f is injective, since if x ≠ y, then there exists n such that x ∈ U_n and y ∉ U_n, so 
f_n(x) ≠ f_n(y). The Hilbert cube [0,1]^ω is a compact metric space. Therefore, f(X) is a 
subspace of a compact metric space. 
Hence, X can be imbedded into a compact metric space. 

15.7  SUGGESTED READINGS: 

1.  Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book 
Company, New York International student edition. 

 

             Prof. B . Satyanarayana 
 

 

 
 



LESSON – 16 

CONNECTEDNESS 

OBJECTIVES: 

The objectives of this lesson are to. 
 To understand the concepts of connectedness in a topological space. 
 To understand the concepts of a connected topological space. 
 To understand the concepts of discrete and indiscrete topology. 
 To understand the concepts of a continuous function between topological spaces. 

STRUCTURE: 

16.0:  Introduction 
16.1:  Connected spaces 
16.2:  Short answer questions 
16.3:  Summary 
16.4:  Technical terms 
16.5:  Answer to self assessment questions 
16.6:  Suggested readings 

16.0:  INTRODUCTION: 

In this lesson we study connected topological spaces. which is one of the most important 
topics in topology. Intuitively; a connected space may be thought of a space consisting of a single 
piece. We give a formal definition of a connected topological space. We prove that a subspace 
of the real line R is connected if, an only if. it is an interval. We also prove that the property of 
connectedness is preserved by continuous functions. We further prove that the product of a 
non-empty class of connected spaces is connected and hence Rn and Cn are connected. We also 
introduce the concept of components of a topological space. We study some elementary 
properties of components. 

16.1: CONNECTED SPACES: 

16.1.1: Definition: A topological space (X. T) is said to be connected if X can not be 
represented as the union of two non-empty disjoint open sets. In other words; if X = A B, A, B 
T , A  ,  A  B   implies B =  . then X is said to be connected. 

16.1.2: Definition: Let (X. T ). be a topological space. If there exists A. B in T such that X = 
A  B, A   , B   and A  B =  then this representation of X is called a disconnection of  X.  If  X 
is not connected we say that X is disconnected or equivalently X is disconnected if and only if, 
X has a disconnection. 

16.1.3: Definition: A subspace Y of a topological spade X is said to be connected if Y is 
connected with respect to the relative (induced) topology in Y. 

16.1.4: Lemma:A subspace Y of a topological space X is connected if and only if, Y is not 
contained in the union of two open subsets of X whose intersections with Y are non-empty and 
disjoint. 
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Proof. Suppose that Y is connected. Let Y  A  B when: A and B are open in X. Let C=  A  Y 

,D = B  Y . Then Y= CD. C and D are open in Y.  If  C  D =    and Then D =    since Y is 
connected. 

Conversely suppose that the stated condition holds. Let Y = C D where C and D are disjoint 
open sets in Y. Let C = YA , D = Y B where A and B are open in X. Then Y  A B . If c     
then AY   . i.e. B  Y =  D =    . Hence Y is connected 

16.1.5: SAQ : Let X be any non-empty set. Let T be the indiscrete topology on X. Show that 
(X. T) is a connected topological space. 

16.1.6: SAQ: Let X be a set with at least two elements. Let T be the discrete topology on 
X. Show that (X,T) is disconnected. 

16.1.7: Lemma: let X = { a. b },Y = [ c, d ]. Let Tx be the discrete topology on X    and let Ty be 

the discrete topology on Y. Then (X.Tx ) and (Y.Ty ) are homeomorphic. Thus there exists a 
unique discrete space with two points upto  isometry. 

Proof. Tx  : {    : {a } { b}. X }. Ty = {   .{c}, {d }. Y }. 

Define the mapping f: X  Y by 

f {a) = c and f (b) = d. Then f is a bijection which is continuous and open. Thus f is a 
homeomorphism. 

16.1.8: Notation: let 0 and 1 be two symbols. The discrete two point space is    denoted by 
{0,1}. 

16.1.9: Theorem :A topological space X is disconnected if and only if there    exists 
continuous function from X onto the discrete two point space {0,1}. 

Proof: Suppose that X is disconnected and Let X = AB be a disconnection of    X. Then 
A and Bare non-empty disjoint open subsets of X. 

Define  

Then f –1 (  ) =     f –1 ({0}) = A. f –1({1}) = B. and f –1 ({0.1}) = X and all these sets 
are open in X. Hence f is continuous. 

Also f is onto. since A     , and B   

Conversely suppose that there exists a continuous surjective· function f: X {0.1} Let A= 
{xX/f(x)=0} and B: {xX/f(x)=1}. A and B are non-empty, since f is surjective. Also  A  B  
=  ,{0} and {1} are open and A = f–1 ({0}) = B = f–1 ({1}). Since f is continuous. we have that 
A and B are open in X. Thus X=A B is a disconnection of X. Thus X is disconnected 

16.1.10: Theorem: Let f: X  Y be a continuous mapping of a connected topological 
space X into a topological space Y. Let Z = f ( X ) be the (continuous) image of X. Then Z is 
connected. 

Proof: If Z is not connected, then by 16.1.9there exists a continuous function g from Z onto the 
discrete two point space {o, I}. Then the mapping h : X {0,1} defined by h(x)=g(f(x)). 
Being the composite of two continuous functions, is continuous and it is also onto. This 
implies that X is not connected. which is a contradiction to the hypothesis. Hence Z is 
connected. 
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i 

16.1.11: SAQ: Give a direct proof of theorem 16.1.10 without using theorem . 16.1.9. 

16.1.12: Theorem: The product of any non-empty class of connected spaces is connected. 

Proof: Let {Xi} be a non-empty class connected spaces. Let X =  be the product pace of 

the topological spaces {Xi} space that X is connected. it is enough to prove that any 
Continuous function from X into the discrete two point space {0,1} is not onto. 
Let f : X {0,1} be a continuous function. 
Part A: We first prove that if two elements of  X differ in atmost one component then they have 
the same image under the mapping f, 
Let a = {ai} and x = {xi} X and let it be an index such that xi = ai for i  i1 

Define   is continuous 
mapping from  
Now  is continuous. Since  is connected is a constant 

Now .  is a constant imply that 

. Thus f(x) = f(a). 

B. let a = {a i) be a fixed element of X. Now we prove that if xX and X differs from a in atmost 
n components then f(x) = f(a). 

If n =1 then the result is true by part A. Suppose that the result is true for n = k. let xX such that 
x differs from a in almost k+1 components, say  i1,i2,……ik,ik+1. 
Define y ={y i}X by   for f = 1,2,….,k, and yi = ai for . 

Then x and y differ in at most in their i(k+1) th component. 

By Pan A we have f (x) = f(y). Also y and a differ at most in their i1,i2,…….ik. components. 
By induction hypothesis we have f (y) = f (a). 
f (x) = f (a). Hence the result is true for all n. 

C. Fix some aX. 
Let A={xX / x differs from a in atmost a finite number of components}. 

Then it can be shown that A is a dense subset of X. Also by pan B. f is a constant on A. 
Since {0,1} is a TI - space, we get that f is a constant mapping on X. Hence f is not onto. 

Thus there is no continuous mapping of X onto the discrete two point space {0,1}. Hence 
X is connected. 

16.1.13: SAQ: Let X be a topological space and let Y be a TI – space. Let f : X Y 

be a continuous map such that f is a constant on a dense subset A of X. Prove that f is 
constant on X. 

16.1.14: Theorem: A subspace of the real line R is connected if. and only if it is an interval. 
In particular R is connected. 

Proof. Let X be a subspace of R. Suppose X is connected. To show X is an interval 
1) Suppose that X is not an interval. Then there exist real numbers r, s, t  
r < s < t, r, t X and sX. The sets A = X( –  , s) and B = X s, +  ) are non–empty 

disjoint open sets in X such that X = AB 
Hence X is not connected . 
2) Assume that X is not connected. Let X = AB be a disconnection of X. Then A and B are 
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non-empty and disjoint closed, as well as open, subsets of X. We can choose x A and z  B 
such that x  z. We may assume that x < z. Now x,zX. [x.z] A is bounded above by z. Hence 
y=sup([x.z] A) exists in R. It is clear that x y z, Since X is an interval. x,zX. we have 

yX. Since A is also closed in X, the definition of Y shows that yA. 
  y < z. Also if  > 0 then  y < y + < z implies y +  B. Since B is closed in X we get 

yB. Thus y A B , which is a contradiction since A and B are disjoint.  
Hence X is connected 
The proof is complete from (1) and (2). 

16.1.15: Theorem: The range of a continuous real valued function on a connected space is an 
interval. 

Proof. Let f : X R be a continuous real valued function. Let Z = f (X). 

By theorem 16.1.10, Z is connected. By theorem 16.1.14, we get that Z is an interval. 
Theorem16.1.15may also be stated as follows: Let f be a real valued continuous mapping 
on a connected space X. Let x,yX. Let c be a real number 
f (x) c  f(z). Then zX  f(z)=c. Thus theorem 16.1.15 is also called “Intermediate value 
theorem”. 
 
16.1.16. Theorem : The spaces Rn and Cn are connected. 

Proof : We know that R. being an interval, is connected with the usual topology. We also 
know that Rn as a topological space can be regarded as the product of n copies of the 
connected space R. Hence by theorem 16.1.12. 
We get that Rn is connected. We show that Cn and R2n are homeomorphic as topological spaces. 
Let z =(z1 ,z2 ,...,zn )  Cn, Let zk = ak +ibk for k = 1,2,….,n. 
Define f:Cn  R2n by f(z) = (a1.b1,a2.b2………an.bn) 

Clearly f is one-one and onto and |f (z)| = |z|. 
Thus f is an isometry of Cn onto R2n and hence f is a homeomorphism. Since R2n is connected 
we have Cn is connected. 

16.2: SHORT ANSWER QUESTIONS : 

16.2.1: Prove that X = A B is a disconnection of a topological space X iff A and B are non-
empty disjoint closed sets. 

16.2.2: Show that a topological space X is connected if, for and only if, every non-empty 
proper subset of X has non-empty boundary. 

16.2.3: Show that a topological space X is connected if, and only if, for every two points 
in X there is some connected subspace of X which contains both. 

16.2.4: Prove that a subspace of a topological space X is disconnected iff it can be 
represented as the union of two non-empty sets each of which is disjoint from the closure 
in X of the other. 

16.2.5: Show that the graph of a continuous real function defined on an interval is a 
connected subspace of the Euclidean plane. 

16.2.6: If X is a countable. connected topological space. show that constant functions are 
the only real valued continuous functions on X. 
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 (Hint. Use Theorem 15.1.15 and the fact that every interval with more than one point in R 
is uncountable). 

16.2.7: Determine whether the following are connected subspaccs of R2 
i. {(x, y)  R2 / x  0 } 

ii. {(x, y)  R2 / x2 + y2 = 1} 

iii. {(x. Sin (1/x) / 0  x R ) 

iv. {(x,y) R2/ x  y} 

16.2.8: For any completely regular space X. prove that X is connected iff the Stone- Cech 
compactification  ( X ) of X is connected. 

16.2.9: 1f T1 and T2 are topologies on X such T
1  T2 and (X1, T1) is connected prove that 

(X2, T2) is also connected. 

16.2.10: Prove that a topological space X is connected iff every continuous function from 
X into the discrete two point space {0, l} is constant 

16.3  SUMMARY: 

We learrnt that the connected spaces and connected topological space. We have proved that 
the range of a continuous real valued function on a connected space is an interval. 

16.4  TECHNICAL TERMS: 

1. Topological space; A set with a topology. 
2. Topology; A collection of open sets. 
3. Open set; A set that contains all its limit points. 
4. Connected space; A space that cannot be written as the union of two disjoint non – 

empty open sets. 
5. Discrete topology; A topology where every set is open. 

16.5  ANSWER TO SELF ASSESSMENT QUESTIONS 

16.1.5. SAQ. T= { ,X}. Thus X is the only non-empty open set and hence X can not be 
represented as the union of two non-empty disjoint open sets. 

Hence (X,T ) is a connected space. 

16.1.6:SAQ: Let aX. Then B = X\{a} is non-empty. Since T is the discrete topology. Every subset of X 
is open in (X,T). Thus X = { a }B is a disconnection of X. 

16.1.11:SAQ: Let f: X Y be a continuous function and suppose X is connected. 
 Let Z=f (X). 
Let Z = AB be a disconnection of Z.  
Then  open sets G and H in Y such that  A = Z G and B = Z  H. 

Let G1 = (H) and H1 =   (H). Then G1 and H1 are open in X. 
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similarly . Thus   
  

  
 which is a contraditction. 

  
  

  
  

  
  

Thus X = G1  H1 is a disconnection of X, which contradicts the hypothesis that X is 

connected. Hence Z is connected. 

16.1.13: SAQ : Let f(x) = x  A , since Y is a T
I
– space and aY,{a} is closed in Y.  

Since f is continuous f–1({a}) is closed in X. We have 
  

  

  
Thus f is a constant map on X. 

16.6  SUGGESTED READINGS: 

1.   Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book 
Company, New York International student edition. 

 
Dr. M. Gnaneswara Reddy 

 

 



LESSON – 17 
THE COMPONENTS OF A SPACE 

OBJECTIVES: 

The objectives of this lesson are to. 
 To understand the concepts of components of a topological space. 
 To understand the concepts of a connected topological space. 
 To understand the concepts of a connected subspace of a topological space. 

STRUCTURE: 

17.0:  Introduction 
17.1:  Conected space 
17.2:  Model examination questions 
17.3:  Exercise 
17.4:  Summary 
17.5:  Technical terms 
17.6:  Answer to self assessment questions 
17.7:  Suggested readings 
 
17.0: INTRODUCTION: 

In this lesson, we will prove that a topological space X can always be de- composed into a 
disjoint union of maximal connected subspaces of X, which we call the components of X. 

17.1: CONECTED SPACE: 

17.1.1: Definition : Let ( X. T) be a topological space. A connected subspace of X is said to be 
a component of X if A is not properly contained in any other connected subspace of X. That 
is, a sub space A of X is a component if it is connected. and A B, B connected implies A = 
B. 

17.1.2: If X is a connected space. then X is the only component of X. 

17.1.3: In a discrete topological space X. any set with more than one element is disconnected. 
Hence singleton sets are the only components of X. 

17.1.4: Example: In the space Q of rational numbers with usual topology, any subspace A 
with more than one element is not connected; for if r, sA and r < s we can find an irrational 
t r < t < s and  is a disconnection of A. Thus singleton 
sets are the only components of Q. But the usual topology in Q. is not discrete. 
We prove the following two theorems before we attempt to decompose a space into its 
components. 

17.1.5: Theorem: Let X be a topological space, let {Ci} be a non-empty class of connected 
subspaces of X such that C i is non-empty. Then the subspace C = UCi is connected. 

Proof: Suppose C  A  B here A and B are open sets in X such That is A1 = CA 

and B1 = C B are disjoint. For each i, the connected set   C and hence   A B . (   A) 
 (   B )  A1  B1  = . Since C i is connected by Lemma 16.1.4. either  or 
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. Thus  or . Since  we have either all the  are 
contained in A or all the  are contained in B. Thus  or  Hence 

 or . Thus C  B = or C A =  .Hence C is connected. 

17.1.6 : Theorem : Let A be a connected subspace of a topological space X.  Let B be a 
subspace of X such that . Then B is connected in particular  is connected. 

Proof : Assume that B is disconnected. Then  open sets G and H of X such that 
B G  H ,G1 = B  G  , H1 = B H   and Gi  Hi = 
Since A  B  G  H and A is connected, either A  H and A G =  or H1 = B  H   
.Suppose A  G =  . Then   G =  . If A  H = then     H =  . Since B   we  get that 
B G = or B H =  which is a contradiction. Thus B is connected. 

, by above  is connected. 

17.1.7: Theorem : Let X be a topological space. Then we have the following 

(i) Each point of X is contained in exactly one component of  X. 

(ii) Each connected subspace of  X is contained in a component of  X. 

(iii) Each component of  X is closed in X 

(iv) A connected subspace of  X which is both open and closed is a component of  X. 

Proof: (i) Let xX. Let A= { C  X/ xC and C is connected subspace of X} 
Then A=  since {x}  and x  

By theorem 17.1.5  is connected. 

If D is any connected subspace of   then  . So, D is in the class A. Hence D  

  
Thus Cx is a component of X. If E is any component of then  

Since E is a component and Cx is connected we have Cx = E . 

(i) Let C be a connected subspace of X. If then  

(ii) Let C be a component. Since   C is connected, by  theorem 17.1.6.  is connected 
 and C is a component  is closed. 

(iii) Let C be a connected subspace which is both open and closed in X. By (ii)  a 

component E  C  E. Then C is open and closed in E also. Since E is connected  

we have C= or C = E. Since C is a subspace, we have C Q, Hence C = E is a component.   

17.1.8: SAQ: Prove that a topological space X is connected if, and only if, X has  no non empty 
proper subset which is both open and closed. 

17.1.9: SAQ: If the product  is connected prove that each  Xi  is connected 

17.10: SAQ: Is a component of X Open in X? 

17.1.11: SAQ. Prove that the components of a space form u partition of X. If there are only a 
finite number of components of a space X. prove that each component is open. 
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17.2: MODEL EXAMlNATlON QUESTIONS: 

1) Define a connected space and prove that a topological space X is connected iff  there is 
no continuous function from X onto the discrete two point space (0,1). 

2) Prove that the product of any non-empty class of connected spaces is connected. 
3)  Describe connected subsets of the real line R. 
4) Prove that the continuous image of a connected space is also a connected space,  

Prove that Rn and Cn are connected.  
5) Define a component of a topological space. What are the components of Z. the set of 

all integers. as a subspace of the real line R with the usual topology? 
6) If A B A for subs paces A and B of a topological space X and A is connected, 

show that B is also connected. 
Prove that the components of a topological space X are closed subset of X. Can we prove that 
components of X are also open subsets of X ? Justify your answer. 

17.3: EXCERCISES : 

1) Let {Ci} be a non-empty class of connected subspace of a topological space X such that          
Ci  Cj   for all r and J. Prove that  Ci is also connected. (Hint: proof of theorem 

17.1.5) 
2) Let A1. A2 ..... An ... be a sequence of connected subspaces of a topological space  

X such that  for n = 1, 2,…… prove that  is connected. (Hint 
let . Then . Use induction to prove Bn is connected and 
use theorem 17.1.5 with the class {Bn}). 

3) Use theorem 17.1.5 to prove that X x Y is connected if X and Y are connected. 
4) Prove that an open subspace of the complex plane is connected if, and only if. any 

two points in it can be joined by a polygonal line. 

17.4  SUMMARY: 

We learrnt that the connected space, connected subspace and topological space. We have 
proved that Let X be a topological space, let {Ci} be a non-empty class of connected 
subspaces of X such that C i is non-empty. Then the subspace C = UCi is connected. 

17.5  TECHNICAL TERMS: 

1. Connected space; A topological space that cannot be written as the union of two disjoint 
non-empty open sets. 

2. Connected subspace; A subspace of a topological space that is connected. 
3. Topological space; A set equipped with a topology, which is a collection of open sets. 
4. Component; A maximal connected subset of a topological space. 

17.6  ANSWER TO SELF ASSESSMENT QUESTIONS: 

17.1.8: SAQ: Suppose X is connected. If A is a non-empty proper subset of X which is both 
open and closed then X = A(X \ A) would form a disconnection of X. If X = AB is a 
disconnection of X then A (and also B) is a non-empty proper subset of X which is both open 
and closed in X. 
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17.1.9:  SAQ: Hint. Use theorem 16.1.10 with the projection mapping Pi: X Xi. 

17.1.10: SAQ: See example 12.34. Singleton sets are not open in Q. since if  [r ] Q is 
open in Q then { r } Q(a. b) for some open internal (a, b) in R. But Q (a.b) has infinitely 
many points. 

17.1.11: SAQ: Let X be a topological space. Each  xX  belongs to a unique component Cx 
Then  . If  then C= Cx Cy is connected Cx  C and Cy  C simply C = 

Cx = Cy. Thus the components of  X from a partition of X. 

Let C1 , C2 .........Cn , be the only distinct components of  X. The  and each Cx 
being a component. is closed. 
For each i,  is closed and hence Ci = X – Di is open. 

17.7  SUGGESTED READINGS: 

1.   Introduction to Topology and Modern Analysis by G.F. Simmons, McGraw-Hill Book 
Company, New York International student edition. 

 
Dr. M. Gnaneswara Reddy 
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